首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  11篇
  2019年   2篇
  2017年   1篇
  2013年   2篇
  2006年   1篇
  2000年   1篇
  1994年   1篇
  1990年   2篇
  1980年   1篇
排序方式: 共有11条查询结果,搜索用时 0 毫秒
1.
The transition state of adenosine nucleosidase (EC 3.2.2.7) isolated from yellow lupin (Lupinus luteus) was determined based upon a series of heavy atom kinetic isotope effects. Adenosine labeled with 13C, 2H, and 15N was analyzed by liquid chromatography/electrospray mass spectrometry to determine kinetic isotope effects. Values of 1.024+/-0.004, 1.121+/-0.005, 1.093+/-0.004, 0.993+/-0.006, and 1.028+/-0.005 were found for [1'-13C], [1'-2H], [2'-2H], [5'-2H], and [9-15N] adenosine, respectively. Using a bond order bond energy vibrational analysis, a transition state consisting of a significantly broken C-N bond, formation of an oxocarbenium ion in the ribose ring, a conformation of C3-exo for the ribose ring, and protonation of the heterocyclic base was proposed. This transition state was found to be very similar to the transition state for nucleoside hydrolase, another purine metabolizing enzyme, isolated from Crithidia fasciculata.  相似文献   
2.
3.
Use of hexamethyldisilazane (HMDS) as a final dehydrating solution provides robust, undistorted secondary electron images of a variety of angiosperm and gymnosperm pollen grains, including those considered to be susceptible to collapse in the scanning electron microscope. Ease of handling, low cost, lack of specialized equipment, minimal expenditure of time, and high rate of success are factors that favor HMDS over other drying agents for preparing pollen grains for scanning' electron microscopy.  相似文献   
4.
扫描电子显微镜植物材料的一种化学干燥技术   总被引:1,自引:0,他引:1  
扫描电镜新鲜生物材料的制备,一般都要经过干燥处理,其目的主要是使样品不产生收缩畸变,以使样品的形态结构保持在生活状态,如此获得的样品图像才自然真实。现代广为应用的扫描电镜生物样品的干燥方法是临界点干燥(CPD)法。另外还有莰烯干燥法、乙腈干燥法和叔丁醇干燥法等。Jemes(1983)应用化学试剂六甲基二硅胺烷(nexamthyl disilazane,简称 HMDS),分子式[(CH_3)_3Si]_2对昆虫组织进行干燥处理并  相似文献   
5.
The chemical transformation of phosphinic acid is a well-considered mature area of research on account of the historical significant reactions such as Kabachnik–Fields, Mannich, Arbuzov, Michaelis–Becker, etc. Considerable advances have been made over last years especially in metal-catalyzed, free-radical processes and asymmetric synthesis using catalytic enantioselective. As a result, the aim of this synopsis is to make the reader familiar with advances in the approaches of phosphinic acids toward the synthesis of highly functionalized and valuable buildings blocks. Another purpose of this survey is to provide the current status of the applications of phosphinic acids in the synthesis of drugs.  相似文献   
6.
We evaluated treatment with hexamethyldisilazane (HMDS) as an alternative to critical-point drying (CPD) for preparing microscopic Gastrotricha for scanning electron microscopy (SEM). We prepared large marine (2 mm) and small freshwater (100 μm) gastrotrichs using HMDS as the primary dehydration solvent and compared the results to earlier investigations using CPD. The results of HMDS dehydration are similar to or better than CPD for resolution of two important taxonomic features: cuticular ornamentation and patterns of ciliation. The body wall of both sculpted (Lepidodermeila) and smooth (Dolichodasys) gastrotrichs retained excellent morphology as did the delicate sensory and locomotory cilia. The only unfavorable result of HMDS dehydration was an occasional coagulation of gold residue when the solvent had not fully evaporated before sputter-coating. We consider HMDS an effective alternative for preparing of gastrotrichs for SEM because it saves time and expense compared to CPD.  相似文献   
7.
Use of hexamethyldisilazane (HMDS) as a final dehydrating solution provides robust, undistorted secondary electron images of a variety of angiosperm and gymnosperm pollen grains, including those considered to be susceptible to collapse in the scanning electron microscope. Ease of handling, low cost, lack of specialized equipment, minimal expenditure of time, and high rate of success are factors that favor HMDS over other drying agents for preparing pollen grains for scanning' electron microscopy.  相似文献   
8.
Today, the emergence of the phenomenon of drug or multidrug-resistance for community-associated diseases represents a major concern in the world. In these contexts, the chronic infectious disease, leprosy, grounded by a slow-growing bacterium called Mycobacterium leprae or Mycobacterium lepromatosis is a leading cause of severe disfiguring skin sores and nerve damage in the arms, legs, and skin areas around the body. Even, over 200,000 new leprosy cases are being accounted every year along with the relapsed leprosy cases. Nonetheless, this has been considered a curable disease with a higher dose of multidrug therapy (MDT) for a long period of time. The prolonged action of a high dose of combination drugs administration may cause an adverse reaction that can significantly affect patient compliance, particularly the outbreak of multidrug-resistance in the infected person. To overcome these shortfalls or prevent the resistance-associated problems, researchers are diligently involved in the structural modifications of the clinically used anti-leprosy drugs or the allied compounds for the structure-antimycobacterial activity relationship study. This review article described the detailed synthesis and biological assays of different anti-leprosy compounds reported by several research groups.  相似文献   
9.
Scanning electron microscopy (SEM) and light stereoscopic microscopy (LSM) were used for the first time to elucidate the external morphology of the so called “trophobiotic organ” on the end of abdomen of apterous viviparous females of six aphid species (Insecta: Hemiptera: Aphididae), representatives of the myrmecophilous, subterranean aphids from the subfamilies Anoeciinae (Anoecia furcata), Eriosomatinae (Forda formicaria, Geoica utricularia, Tetraneura ulmi), and Lachninae (Protrama flavescens, Trama troglodytes). We examined and compared the external morphology in the parthenogenetic generation living on roots of deciduous plants. FE-SEM images based on HMDS preparation techniques revealed great similarity of perianal structures even between not closely related groups. Rectangular, vertically positioned anal plate, extremely shortened cauda and setae around the anus seem to be common features of these aphids. However, some differences in the number and length of setae, their arrangement and inclination of anal plate may be observed. The discussion focuses on the adaptive importance of such modifications, with respect to underground life mode and myrmecophily, but with reservations concerning living in galls by representatives of Eriosomatinae, which is hypothesized to be a factor driving the development of such modifications of perianal structures in this group of aphids.  相似文献   
10.

Background

There is no doubt that future discoveries in the field of biochemistry will depend on the implementation of novel biosensing techniques, able to record biophysiological events with minimal biological interference. In this respect, organic electronics may represent an important new tool for the analysis of structures ranging from single molecules up to cellular events. Specifically, organic field-effect transistors (OFET) are potentially powerful devices for the real-time detection/transduction of bio-signals. Despite this interest, up to date, the experimental data useful to support the development of OFET-based biosensors are still few and, in particular, n-type (electron-transporting) devices, being fundamental to develop highly-performing circuits, have been scarcely investigated.

Methods

Here, films of N,N′-1H,1H-perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2) molecules, a recently-introduced and very promising n-type semiconductor, have been evaporated on glass and silicon dioxide substrates to test the biocompatibility of this compound and its capability to stay electrically-active even in liquid environments.

Results

We found that PDIF-CN2 transistors can work steadily in water for several hours. Biocompatibility tests, based on in-vitro cell cultivation, remark the need to functionalize the PDIF-CN2 hydrophobic surface by extra-coating layers (i.e. poly-l-lysine) to favor the growth of confluent cellular populations.

Conclusions

Our experimental data demonstrate that PDIF-CN2 compound is an interesting organic semiconductor to develop electronic devices to be used in the biological field.

General significance

This work contributes to define a possible strategy for the fabrication of low-cost and flexible biosensors, based on complex organic complementary metal-oxide-semiconductor (CMOS) circuitry including both p- (hole-transporting) and n-type transistors. This article is part of a Special Issue entitled Organic Bioelectronics—Novel Applications in Biomedicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号