首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2019年   1篇
  2013年   1篇
  2011年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Amyloid fibril concentrates have been fractionated and shown to have homogeneous fragments of the variable region of immunoglobulin proteins as their major protein constituent. Amyloid fibril protein purification was performed on ten amyloid preparations by sequential gel filtration on Sepharose 4 B and Sephadex G-100 columns equilibrated with 5 M guanidine-HCl in 1 N acetic acid.  相似文献   
2.
Wall teichoic acid (WTA) was isolated from Enterococcus faecium strain U0317 and structurally characterized using 1H, 13C, and 31P NMR spectroscopy, including two-dimensional COSY, TOCSY, ROESY, HMQC, and HMBC experiments. Further compositional determination was undertaken using classical chemical methods and HF treatment followed by GLC and GLC–MS analyses. The repeating unit of WTA consisted of two residues of 2-acetamido-2-deoxy-d-galactose, glycerol (Gro), and phosphate, and has the structure shown below:→6)-α-d-GalpNAc-(1→3)-β-d-GalpNAc-(1→2)-Gro-(3→P→  相似文献   
3.
The peroxisome proliferator activated receptors (PPARs) are important drug targets in treatment of metabolic and inflammatory disorders. Fibrates, acting as PPARα agonists, have been widely used lipid-lowering agents for decades. However, the currently available PPARα targeting agents show low subtype-specificity and consequently a search for more potent agonists have emerged. In this study, previously isolated oxohexadecenoic acids from the marine algae Chaetoceros karianus were used to design a PPARα-specific analogue. Herein we report the design, synthesis, molecular modelling studies and biological evaluations of the novel 3,5-disubstituted isoxazole analogue 6-(5-heptyl-1,2-oxazol-3-yl)hexanoic acid (1), named ADAM. ADAM shows a clear receptor preference and significant dose-dependent activation of PPARα (EC50 = 47 µM) through its ligand-binding domain (LBD). Moreover, ADAM induces expression of important PPARα target genes, such as CPT1A, in the Huh7 cell line and primary mouse hepatocytes. In addition, ADAM exhibits a moderate ability to regulate PPARγ target genes and drive adipogenesis. Molecular modelling studies indicated that ADAM docks its carboxyl group into opposite ends of the PPARα and -γ LBD. ADAM interacts with the receptor-activating polar network of amino acids (Tyr501, His447 and Ser317) in PPARα, but not in PPARγ LBD. This may explain the lack of PPARγ agonism, and argues for a PPARα-dependent adipogenic function. Such compounds are of interest towards developing new lipid-lowering remedies.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号