首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   6篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  1998年   2篇
排序方式: 共有34条查询结果,搜索用时 62 毫秒
1.
2.
Nck is a ubiquitously expressed, primarily cytosolic adapter protein consisting of one SH2 domain and three SH3 domains. It links receptor and nonreceptor tyrosine kinases to actin cytoskeleton reorganizing proteins. In T lymphocytes, Nck is a crucial component of signaling pathways for T cell activation and effector function. It recruits actin remodeling proteins to T cell receptor (TCR)‐associated activation clusters and thereby initiates changes in cell polarity and morphology. Moreover, Nck is crucial for the TCR‐induced mobilization of secretory vesicles to the cytotoxic immunological synapse. To identify the interactome of Nck in human T cells, we performed a systematic screen for interaction partners in untreated or pervanadate‐treated cells. We used GST fusion proteins containing full length Nck, the combined SH3 domains or the individual SH3 and SH2 domains to precipitate putative Nck interactors from cellular lysates. Protein bands were excised from gels, processed by tryptic in‐gel digestion and analyzed by mass spectrometry. Using this approach, we confirmed previously established interactions (e.g., with Slp76, CD3ε, WASP, and WIPF1) and identified several novel putative Nck‐binding proteins. We subsequently verified the SH2 domain binding to the actin‐binding protein HIP55 and to FYB/ADAP, and the SH3‐mediated binding to the nuclear proteins SFPQ/NONO. Using laser scanning microscopy, we provide new evidence for a nuclear localization of Nck in human T cells. Our data highlight the fundamental role of Nck in the TCR‐to‐cytoskeleton crosstalk and point to yet unknown nuclear functions of Nck also in T lymphocytes.  相似文献   
3.
In this study, we examined the expression of mRNAs for Regenerating gene (Reg)/pancreatitis-associated protein (PAP) family members following hypoglossal nerve injury in rats. In addition to four rat family members (RegI, Reg-2/PAP I, PAP II, and PAP III) that had been identified, we newly cloned and sequenced a type-IV Reg gene in rats. Among these five family members, the expression of Reg-2/PAP I mRNA was predominantly enhanced in injured motor neurons after axotomy. Furthermore, a marked induction of PAP III mRNA was observed in the distal part of the injured nerve. A polyclonal antibody was raised against PAP III, and a Western blotting analysis using this antibody confirmed an increased level of PAP III protein in the injured nerve. These results suggest that Reg family members would be new mediators among injured neurons and glial cells, and may play pivotal roles during nerve regeneration.  相似文献   
4.
BID is an essential component of many apoptotic pathways. Cytosolic proteases cleave BID within an extended loop region, generating an active truncated fragment which synergizes with BAX and BAK to induce release of apoptogenic factors from mitochondria. To determine whether other proteins are cleaved in a similar manner as BID, we performed a database search for proteins which possess sequence similarity with the BID loop region. One of the proteins identified was the Hsc70-interacting protein (HIP). We analyzed the cleavage pattern of HIP using two known activators of BID: granzyme B and caspase-8. In in vitro cleavage assays using recombinant proteins, human and rat HIP were cleaved by granzyme B. Furthermore, the granzyme B-mediated cleavage site was mapped to the BID loop-like region of HIP by site-directed mutagenesis. This region was also the target for caspase-8-mediated cleavage in rat HIP. However, human HIP was not proteolyzed by caspase-8, which probably reflects sequence differences between human and rat HIP proteins at the P1′ position of the caspase-8 recognition sequence. To determine whether HIP is cleaved during apoptosis, human Jurkat T cells were exposed to granzyme B and perforin. The results of these studies suggest that granzyme B-mediated loss of HIP expression occurs in vivo, and in a coordinate fashion with loss of BID, pro-caspase-8 and pro-caspase-3. These data implicate the Hsp70 co-chaperone HIP in the proteolytic cascade of some apoptotic pathways.  相似文献   
5.
Plastidial degradation of transitory starch yields mainly maltose and glucose. Following the export into the cytosol, maltose acts as donor for a glucosyl transfer to cytosolic heteroglycans as mediated by a cytosolic transglucosidase (DPE2; EC 2.4.1.25) and the second glucosyl residue is liberated as glucose. The cytosolic phosphorylase (Pho2/PHS2; EC 2.4.1.1) also interacts with heteroglycans using the same intramolecular sites as DPE2. Thus, the two glucosyl transferases interconnect the cytosolic pools of glucose and glucose 1-phosphate. Due to the complex monosaccharide pattern, other heteroglycan-interacting proteins (HIPs) are expected to exist.Identification of those proteins was approached by using two types of affinity chromatography. Heteroglycans from leaves of Arabidopsis thaliana (Col-0) covalently bound to Sepharose served as ligands that were reacted with a complex mixture of buffer-soluble proteins from Arabidopsis leaves. Binding proteins were eluted by sodium chloride. For identification, SDS-PAGE, tryptic digestion and MALDI-TOF analyses were applied. A strongly interacting polypeptide (approximately 40 kDa; designated as HIP1.3) was observed as product of locus At1g09340. Arabidopsis mutants deficient in HIP1.3 were reduced in growth and contained heteroglycans displaying an altered monosaccharide pattern. Wild type plants express HIP1.3 most strongly in leaves. As revealed by immuno fluorescence, HIP1.3 is located in the cytosol of mesophyll cells but mostly associated with the cytosolic surface of the chloroplast envelope membranes. In an HIP1.3-deficient mutant the immunosignal was undetectable. Metabolic profiles from leaves of this mutant and wild type plants as well were determined by GC-MS. As compared to the wild type control, more than ten metabolites, such as ascorbic acid, fructose, fructose bisphosphate, glucose, glycine, were elevated in darkness but decreased in the light. Although the biochemical function of HIP1.3 has not yet been elucidated, it is likely to possess an important function in the central carbon metabolism of higher plants.  相似文献   
6.

Background

Although protamine is effective as an antidote of heparin, there is a need to replace protamine due to its side effects. HIP peptide has been reported to neutralize the anticoagulant activity of heparin. The interaction of HIP analog peptides with heparin and heparin-derived oligosaccharides is investigated in this paper.

Methods

Seven analogues of the heparin-binding domain of heparin/heparan sulfate-interacting protein (HIP) were synthesized, and their interaction with heparin was characterized by heparin affinity chromatography, isothermal titration calorimetry, and NMR.

Results

NMR results indicate the imidazolium groups of the His side chains of histidine-containing Hip analog peptide interact site-specifically with heparin at pH 5.5. Heparin has identical affinities for HIP analog peptides of opposite chirality. Analysis by counterion condensation theory indicates the peptide AC-SRPKAKAKAKAKDQTK-NH2 makes on average ∼ 3 ionic interactions with heparin that result in displacement of ∼ 2 Na+ ions, and ionic interactions account for ∼ 46% of the binding free energy at a Na+ concentration of 0.15 M.

Conclusions

The affinity of heparin for the peptides is strongly dependent on the nature of the cationic side chains and pH. The thermodynamic parameters measured for the interaction of HIP peptide analogs with heparin are strongly dependent on the peptide sequence and pH.

General significance

The information obtained in this research will be of use in the design of new agents for neutralization of the anticoagulant activity of heparin. The site-specific binding of protonated histidine side chains to heparin provides a molecular-level explanation for the pH-dependent binding of β-amyloid peptides by heparin and heparan sulfate proteoglycan and may have implications for amyloid formation.  相似文献   
7.
Cancer is a leading cause of death. Early detection is usually associated with better clinical outcomes. Recent advances in genomics and proteomics raised hopes that new biomarkers for diagnosis, prognosis or monitoring therapeutic response will soon be discovered. Proteins secreted by cancer cells, referred also as “the cancer cell secretome”, is a promising source for biomarker discovery. In this review we will summarize recent advances in cancer cell secretome analysis, focusing on the five most fatal cancers (lung, breast, prostate, colorectal, and pancreatic). For each cancer type we will describe the proteomic approaches utilized for the identification of novel biomarkers. Despite progress, identification of markers that are superior to those currently used has proven to be a difficult task and very few, if any, newly discovered biomarker has entered the clinic the last 10 years.  相似文献   
8.
A novel role of the hedgehog pathway in lens regeneration   总被引:4,自引:0,他引:4  
Lens regeneration in the adult newt is a classic example of replacing a lost organ by the process of transdifferentiation. After lens removal, the pigmented epithelial cells of the dorsal iris proliferate and dedifferentiate to form a lens vesicle, which subsequently differentiates to form a new lens. In searching for factors that control this remarkable process, we investigated the expression and role of hedgehog pathway members. These molecules are known to affect retina and pigment epithelium morphogenesis and have been recently shown to be involved in repair processes. Here we show that Shh, Ihh, ptc-1, and ptc-2 are expressed during lens regeneration. The expression of Shh and Ihh is quite unique since these genes have never been detected in lens. Interestingly, both Shh and Ihh are only expressed in the regenerating and developing lens, but not in the intact lens. Interfering with the hedgehog pathway results in considerable inhibition of the process of lens regeneration, including decreased cell proliferation as well as interference with lens fiber differentiation in the regenerating lens vesicle. Down-regulation of ptc-1 was also observed when inhibiting the pathway. These results provide the first evidence of a novel role for the hedgehog pathway in specific regulation of the regenerating lens.  相似文献   
9.
Pancreatic cancer (PAAD) is a highly malignant tumour characterized of high mortality and poor prognosis. Huntingtin-interacting protein 1-related (HIP1R) has been recognized as a tumour suppressor in gastric cancer, while its biological function in PAAD remains to be elucidated. In this study, we reported the downregulation of HIP1R in PAAD tissues and cell lines, and the overexpression of HIP1R suppressed the proliferation, migration and invasion of PAAD cells, while silencing HIP1R showed the opposite effects. DNA methylation analysis revealed that the promoter region of HIP1R was heavily methylated in PAAD cell lines when compared to the normal pancreatic duct epithelial cells. A DNA methylation inhibitor 5-AZA increased the expression of HIP1R in PAAD cells. 5-AZA treatment also inhibited the proliferation, migration and invasion, and induced apoptosis in PAAD cell lines, which could be attenuated by HIP1R silencing. We further demonstrated that HIP1R was negatively regulated by miR-92a-3p, which modulates the malignant phenotype of PAAD cells in vitro and the tumorigenesis in vivo. The miR-92a-3p/HIP1R axis could regulate PI3K/AKT pathway in PAAD cells. Taken together, our data suggest that targeting DNA methylation and miR-92a-3p-mediated repression of HIP1R could serve as novel therapeutic strategies for PAAD treatment.  相似文献   
10.
STI1‐domains are present in a variety of co‐chaperone proteins and are required for the transfer of hydrophobic clients in various cellular processes. The domains were first identified in the yeast Sti1 protein where they were referred to as DP1 and DP2. Based on hidden Markov model searches, this domain had previously been found in other proteins including the mammalian co‐chaperone SGTA, the DNA damage response protein Rad23, and the chloroplast import protein Tic40. Here, we refine the domain definition and carry out structure‐based sequence alignment of STI1‐domains showing conservation of five amphipathic helices. Upon examinations of these identified domains, we identify a preceding helix 0 and unifying sequence properties, determine new molecular models, and recognize that STI1‐domains nearly always occur in pairs. The similarity at the sequence, structure, and molecular levels likely supports a unified functional role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号