首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  国内免费   3篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2014年   6篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
排序方式: 共有47条查询结果,搜索用时 31 毫秒
1.
《Cell》2022,185(16):2975-2987.e10
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   
2.
Sun Y  Zeng F  Zhang W  Qiao J 《Gene》2012,499(2):288-296
Antibiotic glycosyltransferases (AGts) attach unusual deoxy-sugars to aglycons so antibiotics can exert function. It has been reported that polyene macrolide (PEM) AGts have different evolutionary origin when compared with other polyketide AGts, and our previous analysis have suggested that they could be results of horizontal gene transfer (HGT) from eukaryotes. In this paper, we compared the structures of PEM AGts with structures of eukaryotes and other AGts, and then built models of the representative PEM AGts and GT-1 glycosyltransferases. We also constructed the Neighbor-Joining (NJ) trees based on the normalized Root Mean Square (RMS) distance, the Bayesian tree guided by structural alignments, and carried out analysis on several key conserved residues in PEM AGts. The NJ tree showed a close relationship between PEM AGts and eukaryotic glycosyltransferases, and Bayesian tree further supported their affinity with UDP-glucuronosyltransferases (UGTs). Analysis on key conserved residues showed that PEM AGts may have similar interaction mechanism such as in the formation of hydrogen bonds as eukaryotic glycosyltransferases. Using structure-based phylogenetic approaches, this study further supported that PEM AGts were the result of HGT between prokaryotes and eukaryotes.  相似文献   
3.
4.
Gene orf18, which is situated within the intercellular transposition region of the conjugative transposon Tn916 from the bacterial pathogen Enterococcus faecalis, encodes a putative ArdA (alleviation of restriction of DNA A) protein. Conjugative transposons are generally resistant to DNA restriction upon transfer to a new host. ArdA from Tn916 may be responsible for the apparent immunity of the transposon to DNA restriction and modification (R/M) systems and for ensuring that the transposon has a broad host range. The orf18 gene was engineered for overexpression in Escherichia coli, and the recombinant ArdA protein was purified to homogeneity. The protein appears to exist as a dimer at nanomolar concentrations but can form larger assemblies at micromolar concentrations. R/M assays revealed that ArdA can efficiently inhibit R/M by all four major classes of Type I R/M enzymes both in vivo and in vitro. These R/M systems are present in over 50% of sequenced prokaryotic genomes. Our results suggest that ArdA can overcome the restriction barrier following conjugation and so helps increase the spread of antibiotic resistance genes by horizontal gene transfer.  相似文献   
5.

Background

Many proteins have LRR (leucine-rich repeat) units interrupted by non-LRRs which we call IR (non-LRR island region).

Methods

We identified proteins containing LRR@IRs (LRRs having IR) by using a new method and then analyzed their natures and distributions.

Results

LRR@IR proteins were found in over two hundred proteins from prokaryotes and from eukaryotes. These are divided into twenty-one different protein families. The IRs occur one to four times in LRR regions and range in length from 5 to 11,265 residues. The IR lengths in Fungi adenylate cyclases (acys) range from 5 to 116 residues; there are 22 LRR repeats. The IRs in Leishmania proteophosphoglycans (ppgs) vary from 105 to 11,265 residues. These results indicate that the IRs evolved rapidly. A group of LRR@IR proteins—LRRC17, chondroadherin-like protein, ppgs, and four Pseudomonas proteins—have a super motif consisting of an LRR block and its adjacent LRR@IR region. This indicates that the entire super motif experienced duplication. The sequence analysis of IRs offers functional similarity in some LRR@IR protein families.

General significance

This study suggests that various IRs and super motifs provide a great variety of structures and functions for LRRs.  相似文献   
6.
An intervening sequence (IVS) can be present or absent in the 23S rRNA of Campylobacter jejuni and Campylobacter coli. As part of a survey, we used a polymerase chain reaction (PCR) assay to detect the presence of the IVS in 43 isolates of C. coli and 82 isolates of C. jejuni. An IVS was present in 40 (93.0%) of the C. coli and only 34 (41.5%) of the C. jejuni isolates. Twelve (27.9%) of the C. coli isolates and seven (8.5%) of the C. jejuni isolates resulted in two polymerase chain reaction products, indicating heterogeneity in the presence of the 23S rRNA IVS. Fourteen of the isolates with two products were evaluated by pulse-field gel electrophoresis; 13 different patterns were observed. The total band size of one isolate was substantially greater than the expected 1.7 Mb, possibly indicating a mixed culture. Southern blot analyses demonstrated the expected three rRNA operons in all tested isolates. Nested PCR reactions with operon-specific primers followed by primers for the IVS confirmed that the strains of interest contained either one or two operons carrying the IVS and the remaining operon(s) did not. Sequence analysis of the IVS and flanking regions of the 23S rRNA genes did not discriminate C. jejuni and C. coli as distinct populations. These results indicate horizontal transfer of 23S rRNA genes or portions of the genes between C. jejuni and C. coli. Also, data showing sequence polymorphisms between the three 23S rRNA loci outside of the IVS region suggest that the isolates with intra-genomic heterogeneity appear to be members of clones that have an ancient defect in gene conversion mechanisms needed for concerted evolution of the ribosomal operons.  相似文献   
7.
Yuasa HJ  Ushigoe A  Ball HJ 《Gene》2011,485(1):22-31
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD+). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD+, like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (Km, Vmax and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD+) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking the kynU gene suggests its IDO has a function similar to eukaryotic enzymes.  相似文献   
8.
随着各种生物基因组序列测定工作的完成,大量的DNA序列数据涌现出来,为研究在基因组中寻找水平转移基因提供了极大的便利.将基因序列特征分析和支持向量机技术结合起来,通过分析基因序列的特征差异发现水平转移基因.依据以前研究工作的基础,选取了绝对密码子使用频率(FCU)作为序列特征,主要因为它既包含了基因密码子使用偏性的信息,也包含了基因所编码蛋白的氨基酸组成信息,支持向量机利用这些信息进行水平转移基因分析和预测,可以提高预测的准确性.另外,提出了基于分链的水平转移基因预测新方法,即将细菌基因组前导链和滞后链上的基因区别对待,分别进行水平转移基因预测.结果显示,基本预测方法要优于目前预测结果最好的Tsirigos等提出的基于八联核苷酸频率的打分算法,命中率的相对提高率最高达31.47%,而基于分链的方法对水平转移基因的预测取得了更好的结果.  相似文献   
9.
Mimivirus is one of the most complex and largest viruses known. The origin and evolution of Mimivirus and other giant viruses have been a subject of intense study in the last two decades. The two prevailing hypotheses on the origin of Mimivirus and other viruses are the reduction hypothesis, which posits that viruses emerged from modern unicellular organisms; whereas the virus-first hypothesis proposes viruses as relics of precellular forms of life. In this study, to gain insights into the origin of Mimivirus, we have carried out extensive phylogenetic, correlation, and multidimensional scaling analyses of the putative proteins involved in the replication of its 1.2-Mb large genome. Correlation analysis and multidimensional scaling methods were validated using bacteriophage, bacteria, archaea, and eukaryotic replication proteins before applying to Mimivirus. We show that a large fraction of mimiviral replication proteins, including polymerase B, clamp, and clamp loaders are of eukaryotic origin and are coevolving. Although phylogenetic analysis places some components along the lineages of phage and bacteria, we show that all the replication-related genes have been homogenized and are under purifying selection. Collectively our analysis supports the idea that Mimivirus originated from a complex cellular ancestor. We hypothesize that Mimivirus has largely retained complex replication machinery reminiscent of its progenitor while losing most of the other genes related to processes such as metabolism and translation.  相似文献   
10.
Yeast cells of the human pathogen Candida albicans that enter the bloodstream can be engulfed by macrophage cells but survive in, and can escape from, the phagolysosome. The C. albicans gene HGT12, which is specifically expressed during macrophage infection, encodes a protein that transports fructose, glucose and mannose. Expression of this hexose transporter along with the shift from glycolysis to gluconeogenesis that occurs in these phagocytosed cells suggests a requirement for glucose that can be supplied in part by uptake from the lumen of the phagolysosome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号