首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2017年   1篇
  2014年   2篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  1995年   1篇
  1983年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.

Background

Malaria is an extremely devastating disease that continues to affect millions of people each year. A distinctive attribute of malaria infected red blood cells is the presence of malarial pigment or the so-called hemozoin. Hemozoin is a biocrystal synthesized by Plasmodium and other blood-feeding parasites to avoid the toxicity of free heme derived from the digestion of hemoglobin during invasion of the erythrocytes.

Scope of review

Hemozoin is involved in several aspects of the pathology of the disease as well as in important processes such as the immunogenicity elicited. It is known that the once best antimalarial drug, chloroquine, exerted its effect through interference with the process of hemozoin formation. In the present review we explore what is known about hemozoin, from hemoglobin digestion, to its final structural analysis, to its physicochemical properties, its role in the disease and notions of the possible mechanisms that could kill the parasite by disrupting the synthesis or integrity of this remarkable crystal.

Major conclusions

The importance and peculiarities of this biocrystal have given researchers a cause to consider it as a target for new antimalarials and to use it through unconventional approaches for diagnostics and therapeutics against the disease.

General significance

Hemozoin plays an essential role in the biology of malarial disease. Innovative ideas could use all the existing data on the unique chemical and biophysical properties of this macromolecule to come up with new ways of combating malaria.  相似文献   
2.
Antimicrobial peptides (AMPs) are compounds that act in a wide range of physiological defensive mechanisms developed to counteract bacteria, fungi, parasites and viruses. These molecules have become increasingly important as a consequence of remarkable microorganism resistance to common antibiotics. This report shows Escherichia coli expressing the recombinant antimicrobial peptide Pg-AMP1 previously isolated from Psidium guajava seeds. The deduced Pg-AMP1 open reading frame consists in a 168bp long plus methionine also containing a His6 tag, encoding a predicted 62 amino acid residue peptide with related molecular mass calculated to be 6.98kDa as a monomer and 13.96kDa at the dimer form. The recombinant Pg-AMP1 peptide showed inhibitory activity against multiple Gram-negative (E. coli, Klebsiella pneumonia and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Staphylococcus epidermides) bacteria. Moreover, theoretical structure analyses were performed in order to understand the functional differences between natural and recombinant Pg-AMP1 forms. Data here reported suggest that Pg-AMP1 is a promising peptide to be used as a biotechnological tool for control of human infectious diseases.  相似文献   
3.
An important class of cytolytic antimicrobial peptides (AMPs) assumes an amphipathic, α-helical conformation that permits efficient interaction with biological membranes. Host defence peptides of this type are widespread in nature, and numerous synthetic model AMPs have been derived from these or designed de novo based on their characteristics. In this review we provide an overview of the ‘sequence template’ approach which we have used to design potent artificial helical AMPs, to guide structure-activity relationship studies aimed at their optimization, and to help identify novel natural AMP sequences. Combining this approach with the rational use of natural and non-proteinogenic amino acid building blocks has allowed us to probe the individual effects on the peptides' activity of structural and physico-chemical parameters such as the size, propensity for helical structuring, amphipathic hydrophobicity, cationicity, and hydrophobic or polar sector characteristics. These studies furthermore provided useful insights into alternative modes of action for natural membrane-active helical peptides.  相似文献   
4.
While a significant fraction of heat shock protein 70 (Hsp70) is membrane associated in lysosomes, mitochondria, and the outer surface of cancer cells, the mechanisms of interaction have remained elusive, with no conclusive demonstration of a protein receptor. Hsp70 contains two Trps, W90 and W580, in its N-terminal nucleotide binding domain (NBD), and the C-terminal substrate binding domain (SBD), respectively. Our fluorescence spectroscopy study using Hsp70 and its W90F and W580F mutants, and Hsp70-?SBD and Hsp70-?NBD constructs, revealed that binding to liposomes depends on their lipid composition and involves both NBD and SBD.  相似文献   
5.
狂犬病毒CTN—1株在Vero细胞上的适应传代研究   总被引:7,自引:4,他引:7  
本文报导了用我国狂犬病毒固定毒人二倍体细胞适应株(CTN-1)进行Vero细胞适应传代研究。通过连续传代培养,滴度可达8.01ogLD50/ml,达到了WHO规定的不需浓缩的标准。病毒用0.01MOI感染细胞其产量与1Mol感染量相仿。病毒增殖高峰在4-5天,维持达15天无明显下降,且可连续收获4-5次。因此,该毒种符合WHO提出的疫苗生产毒种要求,可用于狂犬病疫苗生产。  相似文献   
6.
《Médecine Nucléaire》2017,41(2):108-114
The aim of the article was to review the history of the emergence of 99mTc-labeled phosphate agents in the exploration of cardiac amyloidosis and the give an overview of the technique, its accuracy and its application in clinical practice. Potential future directions are mentioned.  相似文献   
7.
8.
Exposure to nitrous oxide (N2O) in vivo is accompanied by oxidation of cob[I]-alamin to the inactive cob[III]alamin [1]. There is loss of methionine synthetase activity [2] and evidence of depressed supply of single carbon units at the formate level of oxidation [3,4,5]. We measured the effect of inactivation of B12 on the folate-dependent transformylases concerned in purine synthesis. After 24 h exposure to N2O there was a significant fall in glycinamide ribonucleotide transformylase (EC 2.1.2.2) and a significant increase in 5-amino-4-imidazole carboxamide transformylase (EC 2.1.2.3).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号