首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  国内免费   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2006年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Improving models that depict the components of net primary production (NPP) in ecosystems will help us to better understand how climate change and human activities affect the biosphere. In this study, NPPgap was introduced into the present human appropriation of net primary production (HANPP) framework. We introduced NPPgap in this study as potential NPP (NPPpot) minus the sum of ecosystem NPP (NPPeco) and HANPP, which relates to the ability of models to depict NPP components. Using the Lhasa River region of the Tibetan Plateau, we examined temporal and spatial variations in the components of NPP over a 10-year period. Results showed that NPPpot, HANPP and NPPeco increased from 2000 to 2010, but at different rates and with different spatial patterns. NPPgap each year ranged from −9.2% to 13.1% for each site and on average composed 1.2% of the total NPPpot. NPPgap was significantly correlated with precipitation, plant biodiversity, plant height and soil properties. NPPgap increased if either of the previous 2 years had been wet years with relative high precipitation. An increase in the richness of palatable species would lead to a larger NPPgap through more compensatory growth. The large fluctuation level of NPPgap reflected the higher stability of vegetation productivity, which is caused by higher plant heights and soil maximum water capacity. This study showed the potential of the HANPP framework in regional assessment of climate and human impacts on net primary productivity. The use of the NPPgap measure reflects the gap in our knowledge and our ability to accurately estimate the components of NPP.  相似文献   
2.
Protected areas serve as reserves of biological diversity and conserve the naturalness of characteristic regional ecosystems. Numerous approaches have been applied to estimate the level of transformation of ecosystems and to compare trends inside and outside of protected areas. In this study, we apply aggregate indicators of anthropogenic pressures on ecosystems and biodiversity in a fine-scale spatial analysis to compare the level of human influence within protected and unprotected areas. The actual state of ecosystems is compared to a natural baseline that is intact or potential natural state. The results show that in a non-protected Central-European landscape, humans appropriate a considerable share of natural ecosystem productivity and carbon stocks, and significantly reduce natural biodiversity and ecosystem services. Human appropriation of net primary production reached more than 60% in total, humans reduced original biodiversity levels by 69%, and net carbon storage was considerably decreased by intensive types of land use. All three indicators significantly differed between protected areas and unprotected areas, suggesting that protected areas maintain higher biodiversity levels, store more carbon and are in total less influenced by human exploitation than average non-protected landscape. Furthermore, we bring evidence that human appropriation of net primary production is negatively related both to biodiversity and ecosystem services indicated by mean species abundance and net carbon storage at the national level. Our results contribute to the quantitative evidence of the impacts of anthropogenic transformation of natural ecosystems on the ecosystem condition, supporting the hypothesis that protected areas significantly reduce anthropogenic pressures and contribute to maintaining critical ecosystem services and biodiversity.  相似文献   
3.
Globally human pressure on the biosphere is increasing, in spite of increases in land use efficiency. The pressure consists of land use and potential degradation. Human appropriation of net primary production (HANPP) is emerging as an indicator, which combines the dual aspects of biomass use and land degradation. Recently HANPP has been used to map the increasing dependence of European countries on biomass imports and the conflicting processes of increased yields and increased consumption. However large overview studies could be complemented with indepth analysis into the causes of changes in individual countries and economic sectors. This allows the analysis of the macroeconomic drivers of change and the responses in sectors to these drivers. In this study we decomposed the HANPP of Finland including imports for the years 2000–2010 using IPAT and applied input-output analysis to look at sectoral land use efficiency in that time period. Finland is a country with intensive biomass trade, and with a very high per capita HANPP. During the study period the sum of domestic and embodied in imports HANPP of the Finnish economy decreased from 76 Mt C/a to 62 Mt C/a (−1% annually on average), while the HANPP related to imports increased from 12 Mt C/a to 14 Mt C/a. The overall trend was that of declining exports and increasing domestic consumption. Of the economic sectors wood harvesting and processing dominated HANPP results, followed by residential construction, animal production and energy supply. In terms of HANPP, most of these decreased, but housing and energy production increased considerably from 2002 to 2010. At the macroeconomic level domestic biomass use per unit of value added decreased (−2.2%/a) as did the amount of HANPP per unit of biomass (−1.1%/a) reflecting increased economic efficiency in land use. In contrast, GDP/capita (+1.3%/a), population (+0.4%) and the share of outsourced HANPP (+0.6%) resulted in increased consumption-based HANPP (from 21 Mt C in 2002 to 27 Mt C in 2010). Our results underline the importance of including international trade and consumption in interpreting overall change in regional HANPP.  相似文献   
4.
Because ecosystems are complex, tradeoffs exist among supplies of multiple ecosystem services, especially between the provisioning and regulating services. In ecosystem processes, net primary production (NPP) is connected with many other processes such as respiration and evapotranspiration. As one key supporting service, NPP is also related to other provisioning and regulating services. This study introduces an analysis framework of ecosystem services tradeoffs from the perspective of varied share of NPP, in the alpine grassland ecosystem of Damxung County on the Tibetan plateau, China. Total NPP was divided into the share of NPP spent on supplying provisioning services and the share used in supporting regulating services. Tradeoffs between provisioning and regulating services were analyzed by quantifying the change of meat provisioning service and the remaining share of NPP used in other ways; the corresponding change in the share of NPP used to support regulating services was also analyzed and compared with other changes in regulating services, such as carbon sequestration and water conservation services. The results show, from 2000 to 2010, the meat provisioning service increased by 199%, but this was at a cost of additional livestock feeding, which used more NPP of the alpine grassland ecosystem. As a result, by 2010 the remaining NPP used for supporting regulating services shrank to 77% of the 2000 level, which was accompanied by a decrease in carbon sequestration and water conservation services by 90% and 67%, respectively. The analysis of tradeoffs from the perspective of variations in the share of NPP used for various services will contribute to the study of mechanisms involved in providing ecosystem services, interactions between the provisioning of various services, and will also help land managers improve the management of ecosystems.  相似文献   
5.
6.
7.
Land use caused by human socioeconomic activities is a driver of change in the global environment. To understand and quantify land‐use change on Earth's natural systems, interdisciplinary approaches linking biophysical and socioeconomic parameters are required. One approach to understand the degree of terrestrial colonization of the biosphere is using the human appropriation of net primary productivity (HANPP). HANPP is defined as the difference between the net primary productivity (NPP) of potential vegetation and the actual NPP for a given area of land. Here, we use HANPP as a lens to examine land‐use change in India from 1700 to 2007 using a spatially explicit data set that extends over this period. We also used the nongridded, Food and Agriculture Organization (FAO) data set to calculate HANPP for India from 1961 to 2012 and compared our results. The average potential NPP for India was estimated to be 664 grams of carbon per square meter per year (g C/m2/year). Between 1700 and 2012, the fraction of pastureland and cropland increased from 20% to almost 60%. HANPP as a fraction of the potential NPP increased from 29% to 73% over this period. Calculations of HANPP using the FAO data set yielded an increase from 600 g C/m2 to just over 700 g C/m2 between 1961 and 2012. We also calculated the embodied HANPP of India by considering imports and exports, but the difference between the two is negligible in comparison to the HANPP of India. We further examined the variation of HANPP with socioeconomic parameters such as the Human Development Index (HDI) and population density. There was a roughly negative trend of HANPP with HDI. HANPP roughly increases with population density and then plateaus above a population density of roughly 200 persons per square kilometer.  相似文献   
8.
在人类占用净初级生产力(HANPP)等研究基础上,提出了净初级生产力(NPP)权衡假设,即生态系统供给、调节服务的权衡受到HANPP各组分分配比例的影响;基于NPP权衡假设构建了生产生态协同提升模式效果的分析框架。以西藏拉萨河流域白朗村为例,基于实地采样、监测数据,分析了生态修复前、协同提升及河谷种草模式下,白朗村的HANPP组分、空间格局,以及生产、生态功能(牲畜养殖数量、碳固定服务和空气净化服务)。结果表明:在实施生态修复前,白朗村共有牲畜15990羊单位,HANPP为35.0 g C/m2,占潜在NPP的13.8%,其中收获导致的HANPPharv占40.0%;生态系统空气净化服务为12.0 g SO2 m-2 a-1,碳固定服务为6245.4 g C m-2 a-1。协同提升后,HANPP总量基本保持不变,但结构发生了变化,其中HANPPharv提高了4.2%,土地利用导致的HANPPluc降低了1.8%。同时,养殖牲畜数量增加6.3%,生态系统调节服务基本保持同一水平。在河谷种草模式下,HANPP总量相比实施生态修复前降低了67.0%,结构变化更加剧烈。HANPPharv增加了84.2%,为25.8 g C/m2;HANPPluc降低了167.0%,为-14.2 g C/m2。牲畜数量大幅增加了2.2倍(35195.0羊单位);而空气净化服务也提高了15.1%(13.8 g SO2 m-2 a-1),碳固定服务提高了5.0%(6560.1 g C m-2 a-1)。研究表明,NPP权衡假设可以为定量分析区域尺度生态系统服务权衡提供一定的理论支持,促进生产生态功能协同提升的生态修复模式优化。  相似文献   
9.
Natural resource scarcity is no longer merely a remote possibility and governments increasingly seek information about the global distribution of resource use and related environmental pressures. This paper presents an international distributional analysis of natural resource use indicators. These encompass both territorial (national production) and footprint (national consumption) indicators for land-related pressures (human appropriation of net primary production, HANPP, and embodied HANPP), for material use (domestic material extraction and consumption and material footprint), and for carbon emissions (territorial carbon emissions and carbon footprints). Our main question is “What, both from a territorial and a footprint perspective, are the main driving factors of international environmental inequality?”. We show that, for the environmental indicators we studied, inequality tends to be higher for footprint indicators than for territorial ones. The exception is land use intensity (as measured by HANPP), for which geographical drivers mainly determine the distribution pattern. The international distribution of material consumption is mainly a result of economic drivers whereas, for domestic extraction, demographic drivers can explain almost half of the distribution pattern. Finally, carbon emissions are the environmental pressure that shows the highest international inequality because of the larger contribution of economic drivers.  相似文献   
10.
This article presents an assessment of energy inputs of the European Union (the 15 countries before the 2004 enlargement, abbreviated EU‐15) for the period 1970–2001 and the United States for 1980–2000. The data are based on an energy flow analysis (EFA) that evaluates socioeconomic energy flows in a way that is conceptually consistent with current materials flow analysis (MFA) methods. EFA allows assessment of the total amount of energy required by a national economy; it yields measures of the size of economic systems in biophysical units. In contrast to conventional energy balances, which only include technically used energy, EFA also accounts for socioeconomic inputs of biomass; that is, it also considers food, feed, wood and other materials of biological origin. The energy flow accounts presented in this article do not include embodied energy. Energy flow analyses are relevant for comparisons across modes of subsistence (e.g., agrarian and industrial society) and also to detect interrelations between energy utilization and land use. In the EU‐15, domestic energy consumption (DEC = apparent consumption = domestic extraction plus import minus export) grew from 60 exajoules per year (1 EJ = 1018 J) in 1970 to 79 EJ/yr in 2001, thus exceeding its territory's net primary production (NPP, a measure of the energy throughput of ecosystems). In the United States, DEC increased from 102 EJ/yr in 1980 to 125 EJ/yr in 2000 and was thus slightly smaller than its NPP. Taken together, the EU‐15 and the United States accounted for about 38% of global technical energy use, 31% of humanity's energetic metabolism, but only 10% of global terrestrial NPP and 11% of world population in the early 1990s. Per capita DEC of the United States is more than twice that of the EU‐15. Calculated according to EFA methods, energy input in the EU and the United States was between one‐fifth and one‐third above the corresponding value reported in conventional energy balances. The article discusses implications of these results for sustainability, as well as future research needs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号