首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   6篇
  2023年   1篇
  2022年   8篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   7篇
  2013年   16篇
  2012年   14篇
  2011年   8篇
  2010年   12篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   12篇
  2005年   8篇
  2004年   1篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
1.
Phosphatidic acid (PA) and phosphoinositides are metabolically interconverted lipid second messengers that have central roles in many growth factor (GF)‐stimulated signalling pathways. Yet, little is known about the mechanisms that coordinate their production and downstream signalling. Here we show that the phosphatidylinositol (PI)‐transfer protein Nir2 translocates from the Golgi complex to the plasma membrane in response to GF stimulation. This translocation is triggered by PA formation and is mediated by its C‐terminal region that binds PA in vitro. We further show that depletion of Nir2 substantially reduces the PI(4,5)P2 levels at the plasma membrane and concomitantly GF‐stimulated PI(3,4,5)P3 production. Finally, we show that Nir2 positively regulates the MAPK and PI3K/AKT pathways. We propose that Nir2 through its PA‐binding capability and PI‐transfer activity can couple PA to phosphoinositide signalling, and possibly coordinates their local lipid metabolism and downstream signalling.  相似文献   
2.
《Biochimie》2013,95(8):1511-1524
This review summarizes available data concerning intradomain structures (IS) such as functionally important amino acid residues, short linear motifs, conserved or disordered regions, peptide repeats, broadly occurring secondary structures or folds, etc. IS form structural features (units or elements) necessary for interactions with proteins or non-peptidic ligands, enzyme reactions and some structural properties of proteins. These features have often been related to a single structural level (e.g. primary structure) mostly requiring certain structural context of other levels (e.g. secondary structures or supersecondary folds) as follows also from some examples reported or demonstrated here. In addition, we deal with some functionally important dynamic properties of IS (e.g. flexibility and different forms of accessibility), and more special dynamic changes of IS during enzyme reactions and allosteric regulation. Selected notes concern also some experimental methods, still more necessary tools of bioinformatic processing and clinically interesting relationships.  相似文献   
3.
Phosphoserine phosphatase (PSP) catalyzes the final and irreversible step of L‐serine synthesis by hydrolyzing phosphoserine to produce L ‐serine and inorganic phosphate. Developing a therapeutic drug that interferes with serine production is of great interest to regulate the pathogenicity of some bacteria and control D ‐serine levels in neurological diseases. We determined the crystal structure of PSP from the hyperthermophilic archaeon Thermococcus onnurineus at 1.8 Å resolution, revealing an NDSB ligand bound to a novel site that is located in a fissure between the catalytic domain and the CAP module. The structure shows a half‐open conformation of the CAP 1 module with a unique protruding loop of residues 150–155 that possesses a helical conformation in other structures of homologous PSPs. Activity assays indicate that the enzyme exhibits marginal PSP activity at low temperature but a sharp increase in the kcat/KM value, approximately 22 fold, when the temperature is increased. Structural and biochemical analyses suggest that the protruding loop in the active site might be an essential component for the regulation of the activity of PSP from hyperthermophilic T. onnurineus. Identification of this novel binding site distantly located from the catalytic site may be exploited for the development of effective therapeutic allosteric inhibitors against PSP activity. © Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
4.
The budding yeast G-tail binding complex CST (Cdc13-Stn1-Ten1) is crucial for both telomere protection and replication. Previous studies revealed a family of Cdc13 orthologues (Cdc13A) in Candida species that are unusually small but are nevertheless responsible for G-tail binding and the regulation of telomere lengths and structures. Here we report the identification and characterization of a second family of Cdc13-like proteins in the Candida clade, named Cdc13B. Phylogenetic analysis and sequence alignment indicate that Cdc13B probably arose through gene duplication prior to Candida speciation. Like Cdc13A, Cdc13B appears to be essential. Deleting one copy each of the CDC13A and CDC13B genes caused a synergistic effect on aberrant telomere elongation and t-circle accumulation, suggesting that the two paralogues mediate overlapping and nonredundant functions in telomere regulation. Interestingly, Cdc13B utilizes its C-terminal OB-fold domain (OB4) to mediate self-association and binding to Cdc13A. Moreover, the stability of the heterodimer is evidently greater than that of either homodimer. Both the Cdc13 A/A homodimer and A/B heterodimer, but not the B/B homodimer, recognized the telomere G-tail repeat with high affinity and sequence specificity. Our results reveal novel evolutionary elaborations of the G-tail-binding protein in Saccharomycotina yeast, suggesting a drastic remodeling of CDC13 that entails gene duplication, fusion, and functional specialization. The repeated and independent duplication of G-tail-binding proteins such as Cdc13 and Pot1 hints at the evolutionary advantage of having multiple G-tail-binding proteins.  相似文献   
5.
HIV encephalitis is the common pathologic correlate of HIV-dementia (HAD). HIV-infected brain mononuclear phagocytes (MP) (macrophages and microglia) are reservoirs for persistent viral infection. When activated, MP contribute to neuronal damage. Such activated and virus-infected macrophages secrete cellular and viral factors, triggering neural destructive immune responses. Our Center's laboratories have begun to decipher the molecular and biochemical pathways for MP-mediated neuronal damage in HAD. This review will discuss the salient clinical and pathological features of HAD and highlight the recent advances made, by our scientists and elsewhere, in unraveling disease mechanisms, including the role of chemokines and their receptors in the neuropathogenesis of HIV-1 encephalitis.  相似文献   
6.
High molecular weight glutenin subunits (HMW-GS) are of a particular interest because of their biomechanical properties, which are important in many food systems such as breadmaking. Using fold-recognition techniques, we identified a fold compatible with the N-terminal domain of HMW-GS Dy10. This fold corresponds to the one adopted by proteins belonging to the cereal inhibitor family. Starting from three known protein structures of this family as templates, we built three models for the N-terminal domain of HMW-GS Dy10. We analyzed these models, and we propose a number of hypotheses regarding the N-terminal domain properties that can be tested experimentally. In particular, we discuss two possible ways of interaction between the N-terminal domains of the y-type HMW glutenin subunits. The first way consists in the creation of interchain disulfide bridges. According to our models, we propose two plausible scenarios: (1) the existence of an intrachain disulfide bridge between cysteines 22 and 44, leaving the three other cysteines free of engaging in intermolecular bonds; and (2) the creation of two intrachain disulfide bridges (involving cysteines 22-44 and cysteines 10-55), leaving a single cysteine (45) for creating an intermolecular disulfide bridge. We discuss these scenarios in relation to contradictory experimental results. The second way, although less likely, is nevertheless worth considering. There might exist a possibility for the N-terminal domain of Dy10, Nt-Dy10, to create oligomers, because homologous cereal inhibitor proteins are known to exist as monomers, homodimers, and heterooligomers. We also discuss, in relation to the function of the cereal inhibitor proteins, the possibility that this N-terminal domain has retained similar inhibitory functions.  相似文献   
7.
Rigden DJ  Franco OL 《FEBS letters》2002,530(1-3):225-232
X-ray crystallography and bioinformatics studies reveal a tendency for the right-handed β-helix domain architecture to be associated with carbohydrate binding proteins. Here we demonstrate the presence of catalytic β-helix domains in glycoside hydrolase (GH) families 49, 55 and 87 and provide evidence for their sharing a common evolutionary ancestor with two structurally characterized GH families, numbers 28 and 82. This domain assignment helps assign catalytic residues to each family. Further analysis of domain architecture reveals the association of carbohydrate binding modules with catalytic GH β-helices, as well as an unexpected pair of β-helix domains in GH family 55.  相似文献   
8.
Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.  相似文献   
9.
Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid and carbohydrate metabolism.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号