首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1996年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
1.
The effects of the calcium channel blockers, verapamil, diltiazem and lanthanum ions and the Ca2+ dependency on motility as well as the photophobic response (stop-response) of Gyrodinium dorsum were studied. At Ca2+ concentrations below 10-3 M, motility was inhibited. La3+ inhibits the stop-response, in contrast to verapamil and diltiazem. The only calcium channel blocker that increased the amount of non-motile cells was verapamil. The results indicate that motility are Ca2+ dependent and that the stop-responses of G. dorsum could be affected by extracellular Ca2+. Effects of the photosythesis inhibitor (DCMU) on the stop-response was also determined. With background light of different wavelength (614, 658 and 686 nm) the stop-response increased. DCMU inhibited this effect of background light. Negative results with the monoclonal antibody Pea-25 directed to phytochrome and the results with DCMU, indicate that the stop-response of G. dorsum is coupled to photosynthesis rather than to a phytochrome-like pigment. Oxygen evolution, but not cell movement, was completely inhibited by 10-6 M DCMU.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-methylurea - DILT diltiazem - DMSO dimethylsulfoxide - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - VER verapamil  相似文献   
2.
3.
4.
The marine dinoflagellate Gyrodinium resplendens Hulburt is a mixotroph. It possesses chloroplasts and is photosynthetic, and it also feeds phagotrophically on another dinoflagellate, Prorocentrum minimum (Pavillard) Schiller. The species could be cultivated only in food-replete cultures. When kept in cultures without food, cellular chl a content and photosynthetic activity of G. resplendens decreased and growth ceased after a few days. In food-replete cultures, G. resplendens could grow strictly heterotrophically in darkness, but growth rate was then three times lower than in food-replete cultures kept in light. It is suggested that the main importance of phagotrophy is to acquire a growth factor essential to photosynthetic growth. The addition of soil extract or amino acids to the growth medium induced enhanced photosynthetic growth of the species even without the presence of particulate food, but only for approximately 2 weeks. Long-term starvation of G. resplendens led to loss of the ability to feed, and therefore starved cells eventually reached a point of no return where neither photosynthesis nor phagotrophy could sustain further growth. Light microscopical observations on G. resplendens revealed new morphological and behavioral details of the species.  相似文献   
5.
Gyrodinium estuariale Hulburt has ultrastructural features typical for a dinoflagellate including a particularly well developed pusule and numerous prominent trichocysts. The amphiesma is relatively simple with thecal vesicles containing thecal membranes. The epicone is embellished with two concentric raised ridges reminiscent of the form typical for more heavily thecate genera.  相似文献   
6.
The effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee were examined in the laboratory. Exposed to 45 different combinations of temperature (10–30 °C) and salinity (0–40) under saturating irradiance, G. instriatum exhibited its maximum growth rate of 0.7 divisions/day at a combination of 25 °C and a salinity of 30. Optimum growth rates (>0.5 divisions/day) were observed at temperatures ranging from 20 to 30 °C and at salinities from 10 to 35. The organism could not grow at ≤10 °C. In addition, G. instriatum burst at a salinity of 0 at all temperatures, but grew at a salinity of 5 at temperatures between 20 and 25 °C. It is noteworthy that G. instriatum is a euryhaline organism that can live under extremely low salinity. Factorial analysis revealed that the contributions of temperature and salinity to its growth of the organism were almost equal. The irradiance at the light compensation point (I0) was 10.6 μmol/(m2 s) and the saturated irradiance for growth (Is) was 70 μmol/(m2 s), which was lower than Is for several other harmful dinoflagellates (90–110 μmol/(m2 s)).  相似文献   
7.
This paper presents results of field and laboratory studies on mixotrophy in the estuarine dinoflagellate Gyrodinium galatheanum (Braarud) Taylor. We tested the hypotheses that this primarily photosynthetic organism becomes phagotrophic when faced with suboptimal light and/or nutrient environments. In Chesapeake Bay, incidence of feeding of this species on cryptophytes is positively correlated with prey density and concentrations of nitrate and nitrite, but negatively correlated with depth, salinity, and phosphate concentration. Feeding in natural assemblages and cultures increased hyperbolically with light intensity. The stoichiometric proportions of dissolved inorganic P and N (DIP:DIN) at the stations where G. galatheanum was present were far below the optimal growth P:N (1:10). Incidence of feeding was negatively related to the ratio of DIP to DIN, suggesting that P limitation may have induced feeding. Addition of nitrate, or addition of both nitrate and phosphate, inhibited feeding in a natural population, indicating that N limitation may also induce feeding. Ingestion of the cryptophyte, Storeatula major, by cultured G. galatheanum was higher in media low in nitrate or phosphate or both, but moderate rates of feeding occurred in nutrient‐replete cultures. When cells were grown in media with varying concentrations of nitrate and phosphate, N deficiency resulted in greater cellular N and Chl a losses than did P deficiency, but P deficiency stimulated feeding more than N deficiency. Both N and P deficiency, or P:N ratios that deviated greatly from 1:10, result in an increase of cellular carbon content and an increase in propensity to feed. Our results suggest that feeding in G. galatheanum is partly a strategy for supplementing major nutrients (N and P) that are needed for photosynthetic carbon assimilation. Feeding in G. galatheanum may also be a strategy for supplementing C metabolism or acquiring trace organic growth factors, since feeding occurs, although at a reduced rate, in nutrient‐replete cultures.  相似文献   
8.
Sexual reproduction and encystment of the marine dinoflagellate Gyrodinium uncatenum Hulburt were induced in nitrogen and phosphorus-limited batch cultures. Sexuality did not occur under nutrient-replete conditions even when growth rate was reduced by non-optimal temperatures. Growth was optimal over a broader temperature range than encystment and virtually no cysts were produced at some low and high temperatures where growth occurred. Most cells initiated sexuality as intracellular pools of each limiting nutrient reached minimum or subsistence levels as much as four days after extracellular nutrients were exhausted. High nitrogen cell quotas during the phosphorus experiment indicate that sexuality was induced by a shortage of phosphorus and not by an indirect effect on nitrogen uptake. Total cyst yield corresponded to successful encystment of 9–13% of the motile populations, yet 60–85% of the plateau-phase motile cells were planozygotes (swimming zygotes formed from fusing gametes). Batch culture studies monitoring total cyst yield may thus seriously underestimate the extent of sexuality. More importantly, the number of cysts produced in a dinoflagellate population may be significantly reduced by environmental factors acting on the cells after sexual induction and fusion.  相似文献   
9.
Sexual processes in the life cycle of the dinoflagellate Gyrodinium uncatenum Hulburt were investigated in isolated field populations. Morphological and morphogenetic aspects of gamete production, planozygote formation, encystment, excystment, and planomeiocyte division are described from observations of living specimens, Protargol silver impregnated material and scanning electron microscope preparations. The sexual cycle was initiated by gamete formation which involved two asexual divisions of the vegetative organism. Gametes were fully differentiated following the second division and immediately capable of forming pairs. Either isogamous or anisogamous pairs were formed by the mid-ventral union of gametes. Gametes invariably joined with flagellar bases in close juxtaposition. Complete fusion of gametes required ca. 1 h, involved plasmogamy followed by karyogamy and resulted in a quadriflagellated planozygote. Planozygotes encysted in 24–48 h to yield a hypnozygote capable of overwintering in estuarine sediments. Hypnozygotes collected from sediment in late winter readily excysted upon exposure to temperatures above 15°C. A single quadriflagellated planomeiocyte emerged from the cyst and under culture conditions divided one to two days later. The four flagella were not evenly distributed at the first division and both bi- and tri-flagellated daughter cells were formed.  相似文献   
10.
Light and electron microscopy, nuclear-encoded LSU rDNA sequences, and pigment analyses were performed on five geographically separate isolates of Gymnodinium mikimotoi. The morphological variation between the isolates equals that found within the isolates. The nuclear-encoded LSU rDNA sequences were nearly identical in all isolates, and molecular analyses using maximum likelihood, parsimony, and neighbor joining showed the geographical isolates as an unresolved clade. Based on the available data it is concluded that the European isolates, formerly identified as Gyrodinium aureolum , Gyrodinium cf. aureolum , or Gymnodinium cf. nagasakiense , are conspecific with the Japanese Gymnodinium mikimotoi. An isolate from the Pettaquamscutt River, USA, is suggested to represent what Hulburt (1957) described as Gyrodinium aureolum. The LSU rDNA sequence data and ultrastructural characters in this isolate closely resemble those of Gymnodinium fuscum , the type species of Gymnodinium , and Gyrodinium aureolum Hulburt is therefore renamed Gymnodinium aureolum (Hulburt) G. Hansen, comb. nov.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号