首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  国内免费   2篇
  2022年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2005年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   1篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   
2.
3.
Tomato (Solanum lycopersicum L.) is an important vegetable and nutritious crop plant worldwide. They are rich sources of several indispensable compounds such as lycopene, minerals, vitamins, carotenoids, essential amino acids, and bioactive polyphenols. Plant regeneration and Agrobacterium-mediated genetic transformation system from different explants in various genotypes of tomato are necessary for genetic improvement. Among diverse plant growth regulator (PGR) combinations and concentrations tested, Zeatin (ZEA) at 2.0 mg l?1 in combination with 0.1 mg l?1 indole-3-acetic acid (IAA) generated the most shoots/explant from the cotyledon of Arka Vikas (36.48 shoots/explant) and PED (24.68 shoots/explant), respectively. The hypocotyl explant produced 28.76 shoots/explant in Arka Vikas and 19.44 shoots/explant in PED. In contrast, leaf explant induced 23.54 shoots/explant in Arka Vikas and 17.64 shoots/explant in PED. The obtained multiple shoot buds from three explant types were elongated on a medium fortified with Gibberellic acid (GA3) (1.0 mg l?1), IAA (0.5 mg l?1), and ZEA (0.5 mg l?1) in both the cultivars. The rooting was observed on a medium amended with 0.5 mg l?1 indole 3-butyric acid (IBA). The transformation efficiency was significantly improved by optimizing the pre-culture of explants, co-cultivation duration, bacterial density and infection time, and acetosyringone concentration. The presence of transgenes in the plant genome was validated using different methods like histochemical GUS assay, Polymerase Chain Reaction (PCR), and Southern blotting. The transformation efficiency was 42.8% in PED and 64.6% in Arka Vikas. A highly repeatable plant regeneration protocol was established by manipulating various plant growth regulators (PGRs) in two tomato cultivars (Arka Vikas and PED). The Agrobacterium-mediated transformation method was optimized using different explants like cotyledon, hypocotyl, and leaf of two tomato genotypes. The present study could be favourable to transferring desirable traits and precise genome editing techniques to develop superior tomato genotypes.  相似文献   
4.
We have established an efficient particle-bombardment transformation protocol for the diploid non-apomictic genotype of the warm season forage crop Paspalum notatum (bahiagrass). A vector containing a herbicide resistance gene (bar) together with the GUS reporter gene was used in transformation experiments. The bar gene confers resistance to the herbicide bialaphos. An improved culture system, highly regenerative callus, dense in compact polyembryogenic clusters, was produced on medium with a high CuSO4 content at elevated temperature. Target tissue (360 calli) produced under these conditions yielded 52 rooted plants on herbicide-containing medium, and 22 of these plants were PCR-positive. DNA gel blot analysis revealed a copy number of 1-5 for the GUS gene in different independent transformants. There was no correlation between copy number and GUS activity. While conventional cultures yielded exclusively albino plants on herbicide-containing medium, improved culture conditions for the target tissue resulted in the recovery of 100% green transgenic plants. All green herbicide-resistant regenerants were morphological normal and fertile.  相似文献   
5.
A general purpose transformation vector, designated pPha-T1, was constructed for use with the diatom Phaeodactylum tricornutum Bohlin. This vector harbors the sh ble cassette for primary selection on medium containing the antibiotic zeocin, and a multiple cloning site flanked by the P. tricornutum fcp A promoter. pPha-T1 was used to establish the utility of three selectable marker genes and two reporter genes for P. tricornutum transformation. The nat and sat-1 genes confer resistance to the antibiotic nourseothricin, and npt II confers resistance to G418. Each of these genes was effective as a selectable marker for identifying primary transformants. These markers could also be used for dual selections in combination with the sh ble gene. The reporter genes uid A and gfp were also introduced into P. tricornutum using pPha-T1. Gus expression in some transformants reached 15 μg·μg−1 of total soluble protein and permitted excellent cell staining, while GFP fluorescence was readily visible with standard fluorescence microscopy. The egfp gene, which has optimal codon usage for expression in human cells, was the only version of gfp that produced a strong fluorescent signal in P. tricornutum. The codon bias of the egfp gene is similar to that of P. tricornutum genes. This study suggests that codon usage has a significant effect on the efficient expression of reporter genes in P. tricornutum. The results presented here demonstrate that a variety of selectable markers and reporter genes can be expressed in P. tricornutum , enhancing the potential of this organism for exploring basic biological questions and industrial applications.  相似文献   
6.
The taste-selective G protein, α-gustducin (α-gus) is homologous to α-transducin and activates phosphodiesterase (PDE) in vitro. α-Gus-knockout mice are compromized to bitter, sweet and umami taste stimuli, suggesting a central role in taste transduction. Here, we suggest a different role for Gα-gus. In taste buds of α-gus-knockout mice, basal (unstimulated) cAMP levels are high compared to those of wild-type mice. Further, H-89, a cAMP-dependent protein kinase inhibitor, dramatically unmasks responses to the bitter tastant denatonium in gus-lineage cells of knockout mice. We propose that an important role of α-gus is to maintain cAMP levels tonically low to ensure adequate Ca2+ signaling.  相似文献   
7.
本实验旨在研究水稻光合作用蛋白中各基因的表达模式. 采用RT-PCR和定量real-time PCR数据分析水稻不同组织的mRNA表达水平.结果显示,PsaK和PsbR3基因仅在茎、叶等绿色组织表达,而胚、胚乳部分均不表达.通过其启动子克隆、植物表达载体构建,以及农杆菌介导转化后,GUS组织染化分析和GUS荧光定量分析表明,两启动子均为组织特异性优势表达,PsbR3启动报告酶GUS在叶片中的表达活性为Actin启动子的3.29倍,而PsaK启动报告酶GUS在叶片中的表达活性低于Actin启动子的.这些初步结果提示,PsbR3启动子决定水稻绿色组织茎叶的优势表达,PsbR3基因可能参与水稻光合作用.  相似文献   
8.
Hansenula polymorpha uses maltase to grow on maltose and sucrose. Inspection of genomic clones of H. polymorpha showed that the maltase gene HPMAL1 is clustered with genes corresponding to Saccharomyces cerevisiae maltose permeases and MAL activator genes orthologues. We sequenced the H. polymorpha maltose permease gene HPMAL2 of the cluster. The protein (582 amino acids) deduced from the HPMAL2 gene is predicted to have eleven transmembrane domains and shows 39-57% identity with yeast maltose permeases. The identity of the protein is highest with maltose permeases of Debaryomyces hansenii and Candida albicans. Expression of the HPMAL2 in a S. cerevisiae maltose permease-negative mutant CMY1050 proved functionality of the permease protein encoded by the gene. HPMAL1 and HPMAL2 genes are divergently positioned similarly to maltase and maltose permease genes in many yeasts. A two-reporter assay of the expression from the HPMAL1-HPMAL2 intergenic region showed that expression of both genes is coordinately regulated, repressed by glucose, induced by maltose, and that basal expression is higher in the direction of the permease gene.  相似文献   
9.
Pib启动子中茉莉酸和乙烯响应元件的转基因分析   总被引:2,自引:1,他引:1  
水稻Pib基因的表达受茉莉酸、乙烯等激素诱导, 为了确定该基因启动子响应茉莉酸和乙烯诱导的必需区域, 进一步阐明茉莉酸和乙烯响应分子元件, 文章用PCR制备了Pib全长启动子-3 572~2 bp及3个5′端有不同长度缺失的Pib启动子片段-2 692~2 bp、-1 335~2 bp、-761~2 bp。4个不同长度Pib启动子分别置换掉双元质粒中gus基因上游的35S构建为重组质粒, 经农杆菌介导转入水稻获得转基因植株。转基因水稻中gus活性的蛋白质水平和mRNA水平的定性和定量分析结果表明, 全长Pib启动子(-3 572~2 bp, pNAR901)启动活性最强, 茉莉酸或乙烯诱导6 h后, 其驱动gus基因在转基因植株各部组织中的表达量明显上升。而-3 572~-2 692 bp区段序列缺失后不但Pib启动子启动活性显著降低而且也丧失了对茉莉酸和乙烯的诱导活性。pNAR902(-2 692~2 bp),pNAR903(-1 335~2 bp)和pNAR904(-761~2 bp)中的Pib启动子序列的缺失长度相差达2倍和3倍以上, 但其对茉莉酸和乙烯的诱导响应没有区别。这些结果显示3个Pib启动子缺失体构建中, 其共同缺失序列即-3 572~-2 692 bp区域是Pib启动子茉莉酸和乙烯诱导响应的必需区域。软件检索证实, Pib启动子序列中只在上述共同缺失区段之内的-2 722 bp处有一个GCCGCC基序。文章报道的转基因实验表明GCCGCC基序可能是Pib基因中有关茉莉酸和乙烯诱导响应的顺式分子元件。  相似文献   
10.
Modeling Ecological Restoration Effects on Ponderosa Pine Forest Structure   总被引:3,自引:0,他引:3  
FIRESUM, an ecological process model incorporating surface fire disturbance, was modified for use in southwestern ponderosa pine ecosystems. The model was used to determine changes in forest structure over time and then applied to simulate changes in aboveground biomass and nitrogen storage since exclusion of the natural frequent fire regime in an unharvested Arizona forest. Dendroecological reconstruction of forest structure in 1876, prior to Euro‐American settlement, was used to initialize the model; projections were validated with forest measurements in 1992. Biomass allocations shifted from herbaceous plants to trees, and nitrogen was increasingly retained in living and dead tree biomass over the 116‐year period (1876–1992). Forest conditions in 1992 were substantially degraded compared to reference presettlement conditions: old‐growth trees were dying at accelerated rates, herbaceous production was reduced nearly 90%, and the entire stand was highly susceptible to high‐intensity wildfire. Following an experiment initiated in 1993 to test ecological restoration treatments, future changes were modeled for the next century. Future forest structure remained within the natural presettlement range of variability under the full restoration treatment, in which forest biomass structure was thinned to emulate presettlement conditions and repeated low‐intensity fire was reintroduced. Simulation of the control treatment indicated continuation of exceptionally high tree density, probably culminating in stand‐replacing ecosystem change through high‐intensity wildfire or tree mortality from pathogens. Intermediate results were observed in the partial restoration treatment (tree thinning only); the open forest structure and high herbaceous productivity found immediately after treatment were gradually degraded as dense tree cover reestablished in the absence of fire. Modeling results support comprehensive restorative management as a long‐term approach to conservation of key indigenous ecosystem characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号