首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   4篇
  国内免费   10篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2015年   4篇
  2014年   9篇
  2013年   9篇
  2012年   3篇
  2011年   6篇
  2010年   8篇
  2009年   8篇
  2008年   3篇
  2007年   8篇
  2006年   14篇
  2005年   18篇
  2004年   8篇
  2003年   13篇
  2002年   7篇
  2001年   7篇
  2000年   10篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
1.
Using two-dimensional polyacrylamide gel electrophoresis, the GroEL homologue ofBacillus subtilis was shown to be induced upon infection with Ø105clz, a clear plaque mutant of the temperate bacteriophage Ø105. Western blotting of one dimensional polyacrylamide gels also showed the induction of the GroEL homologue when cells were infected with Ø105clz.  相似文献   
2.
From plate cultures of Campylobacter jejuni grown in room air a particulate protein of 62 kDa was isolated by ion-exchange chromatography. The protein had a square shape from the side view but when viewed from the top it had a star-shaped structure. The molecular size of the whole particle determined by gel filtration was 850 kDa which suggested the presence of 14 subunits of 62 kDa in each particle. The N-terminal 37 amino residues showed more than 80% homology with the sequence of these heat shock protein (HSP) 60 homologs of Chlamydia trachomatis, Helicobacter pylori, and Escherichia coli (GroEL). This protein is immunologically cross-reactive with the antiserum for the 60-kDa HSP of Yersinia enterocolitica. Production of the 62-kDa protein increased under heat stress and growth in an aerobic atmospheric environment. From these observations we concluded that the 62-kDa protein is a Campylobacter stress protein (Cj62) which belongs to the HSP 60 family.  相似文献   
3.
We investigated GroEL substrates from Bacillus subtilis 168 using the single-ring mutant of B. subtilis GroEL. We identified 28 candidates for GroEL substrates, of which Spo0B, Ald, Eno, SpoIIP, and FbaA were involved in spore formation, and Rnc, Tuf, Eno, Tsf, and FbaA were essential for B. subtilis growth. As observed at the protein level, the amount of SpoIIP interaction with GroEL increased at 3 h after initiation of sporulation.  相似文献   
4.
All living organisms contain a unique class of molecular chaperones called 60?kDa heat shock proteins (HSP60 – also known as GroEL in bacteria). While some organisms contain more than one HSP60 or GroEL isoform, at least one isoform has always proven to be essential. Because of this, we have been investigating targeting HSP60 and GroEL chaperonin systems as an antibiotic strategy. Our initial studies focused on applying this antibiotic strategy for treating African sleeping sickness (caused by Trypanosoma brucei parasites) and drug-resistant bacterial infections (in particular Methicillin-resistant Staphylococcus aureus – MRSA). Intriguingly, during our studies we found that three known antibiotics – suramin, closantel, and rafoxanide – were potent inhibitors of bacterial GroEL and human HSP60 chaperonin systems. These findings prompted us to explore what other approved drugs, natural products, and known bioactive molecules might also inhibit HSP60 and GroEL chaperonin systems. Initial high-throughput screening of 3680 approved drugs, natural products, and known bioactives identified 161 hit inhibitors of the Escherichia coli GroEL chaperonin system (4.3% hit rate). From a purchased subset of 60 hits, 29 compounds (48%) re-confirmed as selective GroEL inhibitors in our assays, all of which were nearly equipotent against human HSP60. These findings illuminate the notion that targeting chaperonin systems might be a more common occurrence than we previously appreciated. Future studies are needed to determine if the in vivo modes of action of these approved drugs, natural products, and known bioactive molecules are related to GroEL and HSP60 inhibition.  相似文献   
5.
The binding of denatured B. stearothermophilus D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to the E. coli chaperonin GroEL was investigated in two systems: (1) GroEL immobilized on Sepharose via a single subunit was titrated with urea-denatured soluble GAPDH and (2) a Sepharose-bound denatured GAPDH monomer was titrated with soluble GroEL. Similar apparent K D values for the complex GroEL·GAPDH were obtained in both cases (0.04 and 0.03 M, respectively), the stoichiometry being 1.0 mol chaperonin per GAPDH subunit in the system with the immobilized GroEL and 0.2 mol chaperonin per Sepharose-bound GAPDH monomer. Addition of GroEL and Mg·ATP to a reactivation mixture increased the yield of reactivation of both E. coli and B. stearothermophilus GAPDHs. Incubation of the Sepharose-bound catalytically active tetrameric and dimeric GAPDH forms with the protein fraction of a wild-type E. coli cell extract resulted in the binding of GroEL to the dimer and no interaction with the tetrameric form. These data suggest that GroEL may be capable of interacting with the interdimeric contact regions of the folded GAPDH dimers.  相似文献   
6.
7.
Nucleotide regulates the affinity of the bacterial chaperonin GroEL for protein substrates. GroEL binds protein substrates with high affinity in the absence of ATP and with low affinity in its presence. We report the crystal structure of (GroEL-KMgATP)(14) refined to 2.0 A resolution in which the ATP triphosphate moiety is directly coordinated by both K(+) and Mg(2+). Upon the binding of KMgATP, we observe previously unnoticed domain rotations and a 102 degrees rotation of the apical domain surface helix I. Two major consequences are a large lateral displacement of, and a dramatic reduction of hydrophobicity in, the apical domain surface. These results provide a basis for the nucleotide-dependent regulation of protein substrate binding and suggest a mechanism for GroEL-assisted protein folding by forced unfolding.  相似文献   
8.
Recent evidence indicates that translation elongation factor Tu (EF-Tu) has a role in the cell in addition to its well established role in translation. The translation factor binds to a specific region called the Gol region close to the N terminus of the T4 bacteriophage major head protein as the head protein emerges from the ribosome. This binding was discovered because EF-Tu bound to Gol peptide is the specific substrate of the Lit protease that cleaves the EF-Tu between amino acid residues Gly59 and lle60, blocking phage development. These experiments raised the question of why the Gol region of the incipient head protein binds to EF-Tu, as binding to incipient proteins is not expected from the canonical role of EF-Tu. Here, we use gol-lacZ translational fusions to show that cleavage of EF-Tu in the complex with Gol peptide can block translation of a lacZ reporter gene fused translationally downstream of the Gol peptide that activated the cleavage. We propose a model to explain how binding of EF-Tu to the emerging Gol peptide could cause translation to pause temporarily and allow time for the leader polypeptide to bind to the GroEL chaperonin before translation continues, allowing cotranslation of the head protein with its insertion into the GroEL chaperonin chamber, and preventing premature synthesis and precipitation of the head protein. Cleavage of EF-Tu in the complex would block translation of the head protein and therefore development of the infecting phage. Experiments are presented that confirm two predictions of this model. Considering the evolutionary conservation of the components of this system, this novel regulatory mechanism could be used in other situations, both in bacteria and eukaryotes, where proteins are cotranslated with their insertion into cellular structures.  相似文献   
9.
We studied the effect of GroEL on the kinetic refolding of-lactalbumin by stopped-flow fluorescence techniques. We usedwild-type GroEL and its ATPase-defficient mutant D398A, and studied thebinding constants between GroEL and the molten globule foldingintermediate at various concentrations of ADP and ATP. The results arecompared with titration of GroEL with the nucleotides, ADP, ATP-analogs(ATP-S and AMP-PNP) and ATP, which have shown that bothADP and the ATP analogs are bound to GroEL in a non-cooperativemanner but that ATP shows a cooperative effect. Similarly, the bindingconstant between GroEL and the folding intermediate decreased in acooperative manner with an increase in ATP concentration although itshowed non-cooperative decrease with respect to ADP concentration. Itis shown that the allosteric control of GroEL by the nucleotides isresponsible for the above behavior of GroEL and that the observeddifference between the ATP- and ADP-induced transitions of GroEL isbrought about by a small difference in an allosteric parameter (the ratio ofthe nucleotide affinities of GroEL in the high-affinity and the low-affinitystates), i.e., 4.1 for ATP and 2.6 for ADP.  相似文献   
10.
Porphyromonas gingivalis, a putative pathogen in human periodontal disease, possesses a 60-kDa heat shock protein (hsp60, GroEL). The GroEL homologs are known to be key molecules in auto-immune reactions because of the sequence similarity with human hsp60. In this study, B-cell epitopes on P. gingivalis GroEL (PgGroEL) were analyzed by both Western immunoblotting with truncated PgGroEL and by the multi-pin synthetic peptide approach. To examine auto-antibody production in periodontitis patients, Western immunoblotting with human gingival fibroblasts was performed. Deletion mutants were constructed from the cloned PgGroEL gene (P. gingivalis groEL), and four C-terminal truncated PgGroEL and one N-terminal truncated PgGroEL were prepared from the deletants. Sera from periodontitis patients reacted with all truncated PgGroEL used in this study. The results suggest that the B-cell epitopes were overlaid throughout PgGroEL. To determine the detailed locations of the B-cell epitope, 84 decapeptides covering the entire PgGroEL were synthesized and the serum IgG response to the peptides was examined. Epitope mapping using the synthetic peptides confirmed that the B-cell epitopes were overlaid throughout the length of PgGroEL and revealed that highly conserved peptides between PgGroEL and human hsp60 were recognized by the serum antibodies. Immuno-reactivity against human gingival fibroblasts was examined with sera from 30 periodontitis patients and 10 periodontally healthy subjects. IgG antibody against the 65-kDa antigen in human gingival fibroblasts (same molecular mass as human hsp60) was detected in two patients. Although IgG production against human hsp60 may be rare case in periodontitis patients, the results of epitope mapping demonstrated the potential of PgGroEL to cause the cross-reactions with human hsp60.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号