首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   3篇
  国内免费   1篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   4篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1979年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
Summary Net aerial primary production and accumulation of nutrients by the grasses and nongrasses of the ground layer community of a cerrado vegetation in central Brazil were determined in burnt and unburnt areas. The net aerial primary production of the ground layer community was 327 gm–2 in the unburnt area and only 242 gm–2 in the burnt area during the first year after fire. Grasses contributed 68 to 78% of the aerial biomass of the ground layer in the unburnt area. The live biomass in the burnt and unburnt areas was comparable by the end of the first dry period after the fire. The major part of N, P and K in the aerial biomass was in the grasses. The concentration of all nutrients in the aerial biomass was generally higher in the burnt area during the first year after the fire.  相似文献   
2.
Summary Two annual species of Bromus, an invader (B. hordeaceus, ex B. mollis) and a non-invader (B. intermedius), were grown for 28 days in growth chambers, at 5 and 100 M NO 3 - in flowing nutrient solution. No differences between the two species were observed at either NO 3 - level, in terms of relative growth rate (RGR) or its components, dry matter partitioning, specific NO 3 - absorption rate, nitrogen concentration, and other characteristics of NO 3 - uptake and photosynthesis. The effects of decreasing NO 3 - concentration in the solution were mainly to decrease the NO 3 - concentration in the plants through decreased absorption rate, and to decrease the leaf area ratio through increased specific leaf mass and decreased leaf mass ratio. Organic nitrogen concentration varied little between the two treatments, which may be the reason why photosynthetic rates were not altered. Consequently, RGR was only slightly decreased in the 5-M treatment compared to the 100-M treatment. This is in contrast with other species, where growth is reduced at much higher NO 3 - concentrations. These discrepancies may be related to differences in RGR, since a log-linear relationship was found between RGR and the NO 3 - concentration at which growth is first reduced. In addition, a strong linear relationship was found between the RGR of these species and their maximum absorption rate for nitrate, suggesting that the growth of species with low maximum RGR may be partly regulated by nutrient uptake.  相似文献   
3.
Summary The structure and organization of the ribosomal DNA (rDNA) of sorghum (Sorghum bicolor) and several closely related grasses were determined by gel blot hybridization to cloned maize rDNA. Monocots of the genus Sorghum (sorghum, shattercane, Sudangrass, and Johnsongrass) and the genus Saccharum (sugarcane species) were observed to organize their rDNA as direct tandem repeats of several thousand rDNA monomer units. For the eight restriction enzymes and 14 cleavage sites examined, no variations were seen within all of the S. bicolor races and other Sorghum species investigated. Sorghum, maize, and sugarcane were observed to have very similar rDNA monomer sizes and restriction maps, befitting their close common ancestry. The restriction site variability seen between these three genera demonstrated that sorghum and sugarcane are more closely related to each other than either is to maize. Variation in rDNA monomer lengths were observed frequently within the Sorghum genus. These size variations were localized to the intergenic spacer region of the rDNA monomer. Unlike many maize inbreds, all inbred Sorghum diploids were found to contain only one rDNA monomer size in an individual plant. These results are discussed in light of the comparative timing, rates, and modes of evolutionary events in Sorghum and other grasses. Spacer size variation was found to provide a highly sensitive assay for the genetic contribution of different S. bicolor races and other Sorghum species to a Sorghum population.  相似文献   
4.
Summary Secretory activities of bicellular microhairs from grasses belonging to the subfamilies Chloridoideae, Arundinoideae, Panicoideae, and Bambusoideae, and including the chloridoid, panicoid and Enneapogon microhair morphological types, have been investigated. Light microscopic histochemistry indicated that all microhairs studied secrete polysaccharide and protein (or glycoprotein), including those which also secrete salt. Localization of polysaccharide at ultrastructural level using periodic acid-thiocarbohydrazidesilver proteinate staining revealed that in panicoid type microhairs dictyosomes are involved in polysaccharide secretion, whereas in the chloridoid and Enneapogon types partitioning membranes seem to be involved instead.Abbreviations Ag silver precipitates representing localization of polysaccharide - BC basal cell - C cuticle - CC cap cell - CH cuticular chamber - CN system of membrane bound channels and vesicles - CP chloroplast - CW cell wall - D dictyosomes - M mitochondria - N nucleus - PTM partitioning membranes - RER rough endoplasmic reticulum - S secretory material - St starch grain - US unstained dictyosome cisternae - V vesicle  相似文献   
5.
Nitrogen losses from perennial grass species   总被引:1,自引:0,他引:1  
Nitrogen losses from plants may occur through a variety of pathways, but so far, most studies have only quantified losses of nutrients by above-ground litter production. We used 15N pulse labelling to quantify total nitrogen losses from above- and below-ground plant parts. Using this method we were able to include also pathways other than above-ground litter production. To test the hypothesis that species from nutrient-poor habitats lose less nitrogen than species from more fertile soils, six perennial grasses from habitats with a wide range of nutrient availability were investigated: Lolium perenne, Arrhenatherum elatius, Anthoxanthum odoratum, Festuca rubra, F. ovina and Molinia caerulea. The results of an experiment carried out in pots in a green-house at two fertility levels show that statistically significant losses occur through pathways other than above-ground litter production. In the low fertility treatment, most (70%) losses from L. perenne occurred by litter production, but in Ar. elatius, F. rubra, F. ovina and M. caerulea, more than 50% of labelled N losses took place by root turn-over, leaching or exudation from roots. When nutrient supply increased, the 15N losses in above-ground dead material increased in all species and in Ar. elatius, A. odoratum and F. rubra the 15N losses via other pathways decreased. Ranked according to decreasing turnover coefficient the sequence of species was: L. perenne, A. odoratum, F. rubra, F. ovina, Ar. elatius, M. caerulea. These results suggest that species adapted to sites with low availability of nutrients lose less nitrogen (including above- and below-ground losses) than species adapted to more fertile soils.  相似文献   
6.
Cultivated barley,Hordeum vulgare L., has a single NADH nitrate reductase (NR) gene while diploid wheat,Triticum monococcum, and cultivated hexaploid wheat,Triticum aestivum L., have two NADH NR genes. To determine whether the NADH NR gene was duplicated since the divergence ofTriticum fromHordeum or was deleted from barley, theT. Monococcum NADH NR gene heme-hinge regions were sequenced and compared with the barley NADH NR gene sequence. Sequence identity and phylogenetic analyses showed that one of theT. Monococcum NADH NR genes is more-closely related to the barley NADH NR gene than to the otherT. Monococcum NADH NR gene. The heme-hinge region of all three NR genes appeared to have evolved at a constant rate. These results suggest that the NADH NR gene duplicated before the divergence ofTriticum andHordeum and that a deletion resulted in the loss of one NADH NR gene from cultivated barley.  相似文献   
7.
Endophytic fungi are thought to interact mutualistically with host plants by producing alkaloid metabolites that deter herbivory. Since such fungi are transmitted via seed in some grasses, the presence of endophytes may also protect plants from seed predators. We conducted seed choice experiments for two dominant seed harvesting ants, Pogonomyrmex rugosus in the Sonoran desert and Pogonomyrmex occidentalis at a higher elevation, riparian zone in Arizona, USA. Non-infected fescue (Festuca arundinacea) seeds and seeds infected with the endophytic fungus, Acremonium coenophialum, were presented to ant colonies in three different populations. Infected seeds were harvested less frequently than non-infected seed for the two populations of Pogonomyrmex rugosus but not for the population of Pogonomyrmex occidentalis. We also a conducted seed dispersal experiment for one population of Pogonomyrmex rugosus. Of the seeds that were harvested, most of the colonies discarded more infected seeds into refuse piles than expected by chance. Seeds discarded into refuse piles have greater germination success than surrounding areas. The most important interaction of endophytes and grasses may be deterrence of seed predation and enhancing the probability of germinating in favorable sites, since these processes directly increase plant fitness.  相似文献   
8.
Summary The concentration, uptake and element use efficiency of N, P and K in one C3 annual (Polypogon monspeliensis) and two C4 (Echinochloa colonum, an annual, andDichathium annulatum, a perennial) grasses were determined during winter and summer seasons in monocultures raised in field plots at three moisture levels,viz. full, half and one-fourth of field capacity. At each moisture regime the plants were clipped thrice at moderate and severe levels corresponding to 40 and 80% of live green. The concentration of these elements was characteristic of the growth habit of these plants;e.g. the build up of concentration was maximum in leaf of the annuals while it was comparable in crown and leaf of Dichanthium. The N level was maximum in Polypogon. The nutrient use effiency was comparable in the two annuals and maximum K and N use were obtained in Polypogon and Dichanthium, respectively.  相似文献   
9.
Summary Eleven grass species varying in potential relative growth rate (RGR) were investigated for differences in chemical composition by pyrolysis mass spectrometry. The spectral data revealed correlations between RGR and the relative composition of several biopolymers. Species with a low potential RGR contained relatively more cell wall material such as lignin, hemicellulose, cellulose, polysaccharide-bound ferulic acid and hydroxyproline-rich protein, whereas species with a high potential RGR showed relatively more cytoplasmic elements such as protein (other than those incorporated in cell walls) and sterols.  相似文献   
10.
Ogle K 《Oecologia》2003,136(4):532-542
The distance between veins has the potential to affect photosynthesis in C4 grasses because photon capture and photosynthetic carbon reduction are primarily restricted to vascular bundle sheath cells (BSC). For example, BSC density should increase as interveinal distance (IVD) decreases, and thus IVD may influence photon capture and photosynthesis in C4 grasses. The objective of this study is to evaluate the potential importance of IVD to the function of C4 grasses, and a literature survey is conducted to test the hypothesis that quantum yield of photosynthesis () increases with decreasing IVD. First, a meta-analysis of and IVD values obtained for 12 C4 grass species supports this hypothesis as and IVD are significantly negatively correlated (r=–0.61). Second, a regression of carbon isotope discrimination () versus IVD was conducted and the regression equation was used in a simple biochemical model that relates to and leakage of CO2 from the BSC. The modeling analysis also supports the hypothesis that decreases with increasing IVD in C4 grasses. C4 grasses are virtually absent from shaded habitats, and the biochemical model is employed to examine the implications of IVD for shade-tolerance in C4 grasses. The model predicts that only those species with uncommonly small IVD values are able to tolerate prolonged shade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号