首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   1篇
  2015年   1篇
  2013年   11篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   3篇
  1978年   5篇
  1976年   2篇
  1974年   1篇
排序方式: 共有58条查询结果,搜索用时 718 毫秒
1.
Circadian oscillations are a fundamental biological property from bacteria to humans. The molecular mechanisms which produce a ca 24-h rhythmicity are still unknown but it has become clear that they are part of the biochemical machinery of the single cell. The cellular circadian system can be favorably studied in single-cell organisms such as the dinoflagellate Gonyaulax polyedra . The complexity of this circadian model system, which consists of at least two circadian oscillators, receives light via two input systems with different spectral sensitivities, and has several feed–back loops between the central oscillator(s) and the environment, is described here.  相似文献   
2.
This is the first report of spontaneous bioluminescence in the autotrophic dinoflagellate Ceratocorys horrida von Stein. Bioluminescence was measured, using an automated data acquisition system, in a strain of cultured cells isolated from the Sargasso Sea. Ceratocorys horrida is only the second dinoflagellate species to exhibit rhythmicity in the rate of spontaneous flashing, flash quantum flux (intensity), and level of spontaneous glowing. The rate of spontaneous flashing was maximal during hours 2–4 of the dark phase [i.e. circadian time (CT)16–18 for a 14:10 h LD cycle (LD14:10)], with approximately 2% of the population flashing-min?1, a rate approximately one order of magnitude greater than that of the dinoflagellate Gonyaulax polyedra. Flash quantum flux was also maximal during this period. Spontaneous flashes were 134 ms in duration with a maximum flux (intensity) of 3.1×109 quanta-s?1. Light emission presumably originated from blue fluorescent microsources distributed in the cell periphery and not from the spines. Values of both spontaneous flash rate and maximum flux were independent of cell concentration. Isolated cells also produced spontaneous flashes. Spontaneous glowing was dim except for a peak of 6.4× 104quanta-s?1 cell?1, which occurred at CT22.9 for LD14:10 and at CT22.8 for LD12:12. The total integrated emission of spontaneous flashing and glowing during the dark phase was 4×109 quantacell?1, equivalent to the total stimulable luminescence. The rhythms for C. horrida flash and glow behavior were similar to those of Gonyaulax polyedra, although flash rate and quantum flux were greater. Spontaneous bioluminescence in C. horrida may be a circadian rhythm because it persisted for at least three cycles in constant dark conditions. This is also the first detailed study of the stimulated bioluminescence of C. horrida, which also displayed a diurnal rhythm. Cultures exhibited >200 times more mechanically stimulated bioluminescence during the dark phase than during the light phase. Mechanical stimulation during the dark phase resulted in 6.7 flashes. cell?1; flashes were brighter and longer in duration than spontaneous flashes. Cruise-collected cells exhibited variability in quantum flux with few differences in flash kinetics. The role of dinoflagellate spontaneous bioluminescence in the dynamics of near-surface oceanic communities is unknown, but it may be an important source of natural in situ bioluminescence.  相似文献   
3.
The chloroplast membranes of Gonyaulax polyedra Stein were studied in replicas of rapidly frozen and fractured cells. The thylakoid EFs face lacked the large 15–16 nm particles characteristic of plants with the light-harvesting chlorophyll a/b protein, presumably because the principal light-harvesting protein of Gonyaulax is the small water-soluble peridinin-chlorophyll-protein and the chlorophyll a/b protein is absent. As in other plants, the EFs thylakoid fracture face carried more particles (4 ×) than EFuface. The PF faces of the thylakoid showed twice as many particles as did the EFs faces. No circadian differences in the number or size of thylakoid membrane particles could be detected. Three membranes comprise the chloroplast envelope in Gonyaulax. They could be clearly differentiated in freeze-fractured cells. The middle envelope membrane carried many fewer particles on both the EF and PF faces than did the other two envelope membranes. The PF faces of both the outer and inner envelope membranes showed more particles than the EF faces, as do many other membranes which have been examined.  相似文献   
4.
In the postgenome era, the analysis of entire subproteomes in correlation with their function has emerged due to high throughput technologies. Early approaches have been initiated to identify novel components of the circadian system. For example, in the marine dinoflagellate Lingulodinium polyedra, a chronobiological proteome assay was performed, which resulted in the identification of already known circadian expressed proteins as well as novel temporal controlled proteins involved in metabolic pathways. In the green alga Chlamydomonas reinhardtii, two circadian expressed proteins (a protein disulfide isomerase and a tetratricopeptide repeat protein) were identified by functional proteomics. Also, the first hints of temporal control within chloroplast proteins of Arabidopsis thaliana were identified by proteome analysis.  相似文献   
5.
6.
7.
This review is intended as a summary of our work carried out as part of the German Research Association (DFG) Center Program on Circadian Rhythms. Over the last six years, our approach to understanding circadian systems combined theoretical and experimental tools, and Gonyaulax and Neurospora have proven ideal for these efforts. Both of these model organisms demonstrate that even simple circadian systems can have multiple light input pathways and more than one rhythm generator. They have both been used to elaborate basic circadian features in conjunction with formal models. The models introduce the “zeitnehmer,” i.e., a clock-regulated input pathway, to the conceptual framework of circadian systems, and proposes networks of individual feedbacks as the basis for circadian rhythmicity.  相似文献   
8.
An endogenous clock regulates the temporal expression of genes/mRNAs that are involved in the circadian output pathway. In the bioluminescent dinoflagellate Gonyaulax polyedra circadian expression of the luciferin-binding protein (LBP) is controlled at the translational level. Thereby, a clock-controlled RNA-binding protein, called circadian controlled translational regulator (CCTR), interacts specifically with an UG-repeat, which is situated in the lbp 3' UTR. Its binding activity correlates negatively with the amount of LBP during a circadian cycle. In the green alga Chlamydomonas reinhardtii, a clock-controlled RNA-binding protein (CHLAMY 1) was identified, which represents an analog of the CCTR from the phylogenetically diverse alga G. polyedra. CHLAMY 1 binds specifically to the 3' UTRs of several mRNAs and recognizes them all via a common cis-acting element, composed of at least seven UG-repeats. The binding strength of CHLAMY 1 is strongest to mRNAs, whose products are key components of nitrogen metabolism resulting in arginine biosynthesis as well as of CO2 metabolism. Since temporal activities of processes involved in nitrogen metabolism have an opposite phase than CHLAMY 1 binding activity, the protein might repress the translation of the cognate mRNAs.  相似文献   
9.
Transport of a nitrate analogue, 36Cl-ClO3, was examined in two diatoms, Skeletonema costatum (Greve.) Cleve and Nitzschia closterium (Ehrenb) W. Sm. A dinoflagellate, Gonyaulax polyedra did not transport ClO3. Transport of 36Cl-ClO3 by diatoms appeared to be active and showed saturation kinetics. The data were fitted by Michaelis-Menten equation at all but the lowest chlorate concentrations (where plots of S vs. v showed a slight concave bend). Affinity of cells for nitrate was considerably higher than for chlorate. The Ki for nitrate inhibition of chlorate transport was calculated assuming competitive inhibition. Light had little or no effect on chlorate transport. Pulse-chase experiments demonstrated that (1) ClO3 (hence NO3) was stored in two intracellular compartments of equal size, (2) internal ClO3 was exchangeable with external ClO3 (rates of efflux and influx were measured), and (3) efflux of intracellular ClO3 showed transient states following a chase of ClO3 or NO3 which stabilized after 10–20 min. Transport of chlorate was a function of growth phase.  相似文献   
10.
Bioluminescence in the unicellular dinoflagellate Gonyaulax polyedra represents an excellent model for studying a circadian controlled process at the biochemical and molecular levels. There are three key components involved in the bioluminescence reaction: the enzyme, luciferase, its substrate, luciferin, and a luciferin-binding protein (LBP), which sequesters the substrate at pH 7.5 and thus prevents it from reacting with the enzyme. All components are tightly packed together in organdies, designated scintillons. The entire bioluminescent system is under circadian control with maximum amounts in the night. For both proteins circadian control is exerted at the translational level. In case of Ibp mRNA a small interval in its 3'untranslated region serves as a cis -acting element to which a trans -factor binds in a circadian manner. The binding activity of this factor decreases at the beginning of the night phase, when synthesis of LBP starts, and it increases al the end of the night, when synthesis of LBP stops indicating that it functions as a clock-controlled represser.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号