首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  国内免费   1篇
  2022年   1篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有20条查询结果,搜索用时 62 毫秒
1.
Acquisition of metastatic potential is accompanied by changes in cell surface N-glycosylation. One of the best-studied changes is increased expression of N-acetylglucosaminyltransferase V enzyme (GnT-V) and its products, β1,6-branched N-linked oligosaccharides, observed in the tumorigenesis of many cancers. In this study we demonstrate that during the transition from the vertical growth phase (VGP) (WM793 cell line) to the metastatic stage (WM1205Lu line), β1,6 glycosylation of melanoma cell surface proteins increases as a consequence of elevated expression of the GnT-V-encoding Mgat-5 gene. Treatment with swainsonine led to reduced cell motility on fibronectin in both cell lines; the effect was stronger in metastatic cells, probably due to the higher content of GlcNAc β1,6-branched glycans on the main fibronectin receptors – integrins α5β1 and α3β1. Our results show that GlcNAc β1,6 N-glycosylation of cell surface receptors, which increases with the aggressiveness of melanoma cells, is an important factor influencing melanoma cell migration.  相似文献   
2.
3.
4.
In tumor cells, alterations in cellular glycosylation may play a key role in their metastatic behavior. Using small interfering RNA against GnT-V, we found that the expression of GnT-V and β1,6GlcNAc branching were significantly reduced which was particularly accompanied by the arrest in both cell migration and invasion as compared to the negative control. Moreover, the suppressed GnT-V expression by siRNA technique inactivated the signaling molecules including Rac1, cofilin, Erk and Akt, and activated RhoA levels in cells lacking GnT-V, but revealed no impact on Cdc42 activity. All these notions disclose for the first time that GnT-V and β1, 6GlcNAc branching mediate the cell migration and invasion in Rac1-positive and RhoA-negative regulatory manners. Yunxue Zhao and Jing Li contributed equally to this work.  相似文献   
5.
N-Acetylglucosaminyltransferase V (GnT-V) catalyzes the β1,6 branching of N-acetylglucosamine on N-glycans. GnT-V expression is elevated during malignant transformation in various types of cancer. However, the mechanism by which GnT-V promotes cancer progression is unclear. To characterize the biological significance of GnT-V, we established GnT-V transgenic (Tg) mice, in which GnT-V is regulated by a β-actin promoter. No spontaneous cancer was detected in any organs of the GnT-V Tg mice. However, GnT-V expression was up-regulated in GnT-V Tg mouse skin, and cultured keratinocytes derived from these mice showed enhanced migration, which was associated with changes in E-cadherin localization and epithelial-mesenchymal transition (EMT). Further, EMT-associated factors snail, twist, and N-cadherin were up-regulated, and cutaneous wound healing was accelerated in vivo. We further investigated the detailed mechanisms of EMT by assessing EGF signaling and found up-regulated EGF receptor signaling in GnT-V Tg mouse keratinocytes. These findings indicate that GnT-V overexpression promotes EMT and keratinocyte migration in part through enhanced EGF receptor signaling.  相似文献   
6.
The severe phenotypic effects of altered glycosylation in the congenital muscular dystrophies, including Walker-Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, and congenital muscular dystrophy 1D, are caused by mutations resulting in altered glycans linked to proteins through O-linked mannose. A glycosyltransferase that branches O-Man, N-acetylglucosaminyltransferase Vb (GnT-Vb), is highly expressed in neural tissues. To understand the expression and function of GnT-Vb, we studied its expression during neuromorphogenesis and generated GnT-Vb null mice. A paralog of GnT-Vb, N-acetylglucosaminyltransferase (GnT-V), is expressed in many tissues and brain, synthesizing N-linked, β1,6-branched glycans, but its ability to synthesize O-mannosyl-branched glycans is unknown; conversely, although GnT-Vb can synthesize N-linked glycans in vitro, its contribution to their synthesis in vivo is unknown. Our results showed that deleting both GnT-V and GnT-Vb results in the total loss of both N-linked and O-Man-linked β1,6-branched glycans. GnT-V null brains lacked N-linked, β1,6-glycans but had normal levels of O-Man β1,6-branched structures, showing that GnT-Vb could not compensate for the loss of GnT-V. By contrast, GnT-Vb null brains contained normal levels of N-linked β1,6-glycans but low levels of some O-Man β1,6-branched glycans. Therefore, GnT-V could partially compensate for GnT-Vb activity in vivo. We found no apparent change in α-dystroglycan binding of glycan-specific antibody IIH6C4 or binding to laminin in GnT-Vb null mice. These results demonstrate that GnT-V is involved in synthesizing branched O-mannosyl glycans in brain, but the function of these branched O-mannosyl structures is unresolved using mice that lack these glycosyltransferases.  相似文献   
7.
通过构建针对N-乙酰氨基葡萄糖转移酶Ⅴ(GnT-Ⅴ)的小片段发夹状RNA(shRNA)干扰表达质粒,研究了shRNA表达质粒沉默GnT-Ⅴ基因后对LoVo细胞增殖、黏附以及迁移、侵袭能力的影响.设计了靶向GnT-Ⅴ基因的小干扰RNA(siRNA)靶序列,构建shRNA表达载体并转染人结肠癌LoVo细胞,通过G418筛选建立稳定低表达GnT-Ⅴ基因的细胞株.分别采用半定量逆转录聚合酶链反应(RT-PCR)和蛋白质印迹(Western blot)检测shRNA对GnT-Ⅴ基因mRNA及蛋白质表达的影响.并通过CCK-8增殖实验、异质黏附实验、划痕愈合实验、趋化运动实验、细胞侵袭实验评价pGPU6/GFP/Neo GnT-Ⅴ shRNA对人结肠癌LoVo细胞增殖、黏附以及迁移、侵袭能力的影响.实验成功地构建了GnT-Ⅴ shRNA表达质粒,并且该质粒明显下调GnT-Ⅴ的表达,LoVo GnT-Ⅴ/1564和LoVo GnT-Ⅴ/2224的mRNA水平的抑制率分别为82%和71.5%,蛋白质水平的抑制率分别为68%和56%.选择干扰效率较高的LoVo GnT-Ⅴ/1564进行进一步实验.CCK-8增殖实验显示,与阴性对照组相比,LoVo GnT-Ⅴ/1564的增殖受到明显抑制(P < 0.001),尤以72 h为著;下调GnT-Ⅴ表达可增强LoVo细胞的黏附能力( t = -3.357,P < 0.01),而显著抑制LoVo细胞的趋化运动能力( t = 44.051,P < 0.001);划痕实验结果也显示抑制GnT-Ⅴ表达延长LoVo细胞的愈合时间;用Matrigel胶介导的细胞侵袭实验结果显示,LoVo GnT-Ⅴ/1564和LoVo GnT-Ⅴ/NC的穿膜细胞数分别为(5.10 ± 1.25)个和(39.55 ± 2.16)个,GnT-Ⅴ/1564组较阴性对照组明显减少( t = 61.626,P < 0.001).结果表明,靶向GnT-Ⅴ的shRNA真核表达质粒可以显著降低GnT-Ⅴ的表达,从而抑制LoVo细胞的增殖、迁移和侵袭能力,因此,该GnT-Ⅴ的siRNA序列可能成为治疗结直肠癌的有效靶点.  相似文献   
8.
beta1-6 GlcNAc branching, a product of N-acetylglucosaminyltransferase V (GnT-V), is a key structure that is associated with malignant transformations and cancer metastasis. Although a number of reports concerning tumor metastasis-related glycoproteins that contain beta1-6 GlcNAc branching have appeared, the precise function of beta1-6 GlcNAc branching on glycoproteins remains to be elucidated. We previously reported on the importance of beta1-6 GlcNAc branching on matriptase in terms of proteolytic degradation in tumor metastasis. We report here that matriptase purified from GnT-V transfectant (beta1-6 GlcNAc matriptase) binds strongly to L4-PHA, which preferentially recognizes beta1-6 GlcNAc branches of tri- or tetraantennary sugar chains, indicating that the isolated matriptase contains beta1-6 GlcNAc branching. The beta1-6 GlcNAc matriptase was resistant to autodegradation, as well as trypsin digestion, compared with matriptase purified from mock-transfected cells. Furthermore, N-glycosidase-F treatment of beta1-6 GlcNAc matriptase greatly reduced its resistance to degradation. An analysis of matriptase mutants that do not contain potential N-glycosylation sites clearly shows that the beta1-6 GlcNAc branching on N-glycans attached to Asn 772 in the serine protease domain plays a major role in trypsin resistance. This is the first example of a demonstration of a direct relationship between beta1-6 GlcNAc branching and a biological function at the protein level.  相似文献   
9.
The modulation of GnT-V activity by signaling molecules in PI-3-K/PKB pathway in human hepatocarcinoma cell line 7721 was studied. GnT-V activity was determined after the transfection of sense or antisense cDNA of PKB into the cells, as well as the addition of activators, specific inhibitors, and the antibodies to the enzyme assay system or culture medium. It was found that the basal activity of GnT-V was up regulated by the sense and down regulated by the antisense cDNA of PKB transfected into 7721 cells. GnT-V was activated by PIP2, PIP3 or GTP[S] added to the assay system, and the activation of PIP2 or GTP[S] was abolished by LY2940002, a specific inhibitor of PI-3-K, but the activation of PIP3 was not attenuated by LY2940002. In addition, GnT-V activity in cultured parental or H-ras transfected cells was inhibited by the antibody against PKB or PI-3-K. These findings demonstrated the involvement of PI-3-K/PKB signaling pathway in the regulation of GnT-V. Moreover, ET18-OCH3, an inhibitor of Raf translocation and PI-PLC enzyme, which produces the activator of PKC, as well as the antibodies against Raf-1 or MEK also inhibited GnT-V activity in the parental and H-ras transfected cells. The inhibitory rates, however, were less in the transfected cells than those in the parental cells. These results reveal that in parental and H-ras transfected 7721 cells, the basal activity of GnT-V is also regulated by the Ras/Raf-1/MEK/MAPK cascade in addition to PI-3-K/PKB signaling pathway. The significance of these two pathways in the regulation of GnT-V and their relations to the activation of PKC previously reported by our laboratory (Ju TZ et al., 1995 Glyconjugate J 12, 767–772) was discussed.  相似文献   
10.
1. N-Acetylglucosaminyltransferases V (GnT-V/Mgat5) play a pivotal role in the processing of N-linked glycoproteins in the Golgi apparatus. The aim of the present study is to investigate whether the N-acetylglucosaminyltransferase V is able to modify TrKA, the high-affinity tyrosine kinase-type receptor for NGF, and thereby to regulate the receptor function. 2. Plasmids of the pcDNA3/GnT-V and pcDNA3 were transfected into PC12 cells. Expression of GnT-V protein was detected by Western blot. TrKA protein was examined by immunoprecipitation. Endocytosis of TrKA was investigated by the method of receptor internalization. 3. We report here that over-expression GnT-V directly modifies TrKA protein, accompanied by marked enhancement of axon outgrowth in rat pheochromocytoma cells (PC12) elicited by a low dose of NGF that alone is insufficient to induce neuronal differentiation. Further study indicated that modification of TrKA glycoprotein could directly enhance NGF-activated autophosphorylation of immunoprecipitated TrKA in vitro. To further elucidate the mechanism, we study the different time point of endocytosis of TrKA receptor. The results show that TrKA of GnT-V gene-transfected PC12 Cells delayed their removal by constitutive endocytosis as compared to the mock cells, suggesting high expression of GnT-V may affect their receptor TrKA endocytosis. 4. These results strongly suggest that N-acetylglucosaminyltransferase V functioning as a specific endogenous role of NGF receptor function, which appear to be due, at least in part, to the promotion of differentiation. This work is an important step toward intriguing innovative therapeutic strategies targeting glycosyltransferase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号