首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   0篇
  国内免费   2篇
  2021年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
Paraquat-resistant biotypes of the closely-related weed species Hordeum leporinum Link and H. glaucum Steud. are highly resistant to paraquat when grown during the normal winter growing season. However, when grown and treated with paraquat in summer, these biotypes are markedly less resistant to paraquat. This reduced resistance to paraquat in summer is primarily a result of increased temperature following herbicide treatment. The mechanism governing this decrease in resistance at high temperature was examined in H. leporinum. No differences were observed between susceptible and resistant biotypes in the interaction of paraquat with isolated thylakoids when assayed at 15, 25, or 35 °C. About 98 and 65% of applied paraquat was absorbed through the leaf cuticle of both biotypes at 15 and 30 °C, respectively. Following application to leaves, more herbicide was translocated in a basipetal direction in the susceptible biotype compared to the resistant biotype at 15 °C. However, at 30 °C more paraquat was translocated in a basipetal direction in the resistant biotype. Photosynthetic activity of young leaf tissue from within the leaf sheath which had not been directly exposed to paraquat was measured 24 h after treatment of plants with para. quat. This activity was inhibited in the susceptible biotype when plants were maintained at either 15 °C or 30 °C after treatment. In contrast, photosynthetic activity of such tissue of the resistant biotype was not inhibited when plants were maintained at 15 °C after treatment, but was inhibited at 30 °C. The mechanism of resistance in this biotype of H. leporinum correlates with decreased translocation of paraquat and decreased penetration to the active site. This mechanism is temperature sensitive and breaks down at higher temperatures.We are grateful to Zeneca Agrochemicals, Jealotts Hill, Berkshire, UK who provided [14C]paraquat. E.P. was supported through a Ph.D. scholarship from the Australian International Development Assistance Bureau and C.P. was the recipient of an Australian Research Council Postdoctoral Fellowship.  相似文献   
2.
Acetone degradation by cell suspensions of Desulfobacterium cetonicum was CO2-dependent, indicating initiation by a carboxylation reaction. Degradation of butyrate was not CO2-dependent, and acetate accumulated at a ratio of 1 mol acetate per mol butyrate degraded. In cultures grown on acetone, no CoA transfer apparently occurred, and no acetate accumulated in the medium. No CoA-ligase activities were detected in cell-free crude extracts. This suggested that the carboxylation of acetone to acetoacetate, and its activation to acetoacetyl-CoA may occur without the formation of free acetoacetate. Acetoacetyl-CoA was thiolytically cleaved to two acetyl-CoA, which were oxidized to CO2 via the acetyl-CoA/carbon monoxide dehydrogenase pathway. The measured intracellular acyl-CoA ester concentrations allowed the calculation of the free energy changes involved in the conversion of acetone to acetyl-CoA. At in vivo concentrations of reactants and products, the initial steps (carboxylation and activation) must be energy-driven, either by direct coupling to ATP, or coupling to transmembrane gradients. The G of acetone conversion to two acetyl-CoA at the expense of the energetic equivalent of one ATP was calculated to lie very close to 0kJ (mol acetone)-1. Assimilatory metabolism was by an incomplete citric acid cycle, lacking an activity oxidatively decarboxylating 2-oxoglutarate. The low specific activities of this cycle suggested its probable function in anabolic metabolism. Succinate and glyoxylate were formed from isocitrate by isocitrate lyase. Glyoxylate thus formed was condensed with acetyl-CoA to form malate, functioning as an anaplerotic sequence. A glyoxylate cycle thus operates in this strictly anaerobic bacterium. Phosphoenolpyruvate (PEP) carboxykinase formed PEP from oxaloacetate. No pyruvate kinase activity was detected. PEP presumably served as a precursor for polyglucose formation and other biosyntheses.Abbreviations MV 2+ Oxidized methyl viologen - PEP Phosphoenolpyruvate - PHB Poly--hydroxybutyrate  相似文献   
3.
Glyoxylate decarboxylation during photorespiration   总被引:4,自引:0,他引:4  
Bernard Grodzinski 《Planta》1978,144(1):31-37
At 25° C under aerobic conditions with or without gluamate 10% of the [1-14C]glycollate oxidised in spinach leaf peroxisomes was released as 14CO2. Without glutamate only 5% of the glycollate was converted to glycine, but with it over 80% of the glycollate was metabolised to glycine. CO2 release was probably not due to glycine breakdown in these preparations since glycine decarboxylase activity was not detected. Addition of either unlabelled glycine or isonicotinyl hydrazide (INH) did not reduce 14CO2 release from either [1-14C]glycollate or [1-14C]glyoxylate. Furthermore, the amount of available H2O2 (Grodzinski and Butt, 1976) was sufficient to account for all of the CO2 release by breakdown of glyoxylate. Peroxisomal glycollate metabolism was unaffected by light and isolated leaf chloroplasts alone did not metabolise glycollate. However, in a mixture of peroxisomes and illuminated chloroplasts the rate of glycollate decarboxylation increased three fold while glycine synthesis was reduced by 40%. Although it was not possible to measure available H2O2 directly, the data are best explained by glyoxylate decarboxylation. Catalase reduced CO2 release and enhanced glycine synthesis. In addition, when a model system in which an active preparation of purified glucose oxidase generating H2O2 at a known rate was used to replace the chloroplasts, similar rates of 14CO2 release and [14C]glycine synthesis from [1-14C]glycollate were measured. It is argued that in vivo glyoxylate metabolism in leaf peroxisomes is a key branch point of the glycollate pathway and that a portion of the photorespired CO2 arises during glyoxylate decarboxylation under the action of H2O2. The possibility that peroxisomal catalase exerts a peroxidative function during this process is discussed.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - INH isonicotinylhydrazide - PHMS pyridyl-2-yl--hydroxymethane sulphonic acid  相似文献   
4.
The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were present in cell-free extracts of the phototrophic, green, thermophilic bacterium Chloroflexus aurantiacus grown with acetate as the sole organic carbon source.The optimum temperature of these enzymes was 40° C, and their specific activities were high enough to account for the observed growth rate. Lower levels of the enzymes were found in extracts from cells grown on a complete medium.Itaconate was shown to inhibit isocitrate lyase from C. aurantiacus 96% at a concentration of 0.25 mM and also had a profound effect on the growth of the organism on acetate, 0.25 mM inhibiting completely. Itaconate also inhibited the growth when added to the complex medium, but in this case much higher concentrations were required.  相似文献   
5.
With 0.5% substrate present in mineral medium, cells of Alcaligenes eutrophus H 16 were able to grow heterotrophically at the expense of guanine, hypoxanthine and xanthine, but not of adenine as sole sources of carbon and nitrogen. An increase in cell counts, however, was observed at lower adenine concentrations (0.1%). Similarly, adenine was only respired if present at low concentrations. Higher amounts of adenine were inhibitory to the utilization of adenine, guanine, hypoxanthine, xanthine, allantoin and glyoxylate, but not to that of fructose or glycerate. The adenine-dependent inhibition of adenine utilization was not overcome by the addition of thiamine, uridine or cytidine. The enzyme glyoxylate carboligase, usually formed in presence of metabolisable purines and of allantoin, was synthesized only at low adenine concentrations. Higher amounts were inhibitory even with allantoin present as additional substrate. According to these resutls, the utilization of purine derivatives and of allantoin as sources of carbon and energy is repressed by adenine in cells of A. eutrophus H 16.  相似文献   
6.
Abstract: The possible roles of oxalic acid, veratryl alcohol, and manganese were investigated in relation to lignin biodegradation by white-rot basidiomycetes. Oxalate inhibited both lignin peroxidase (LiP) and manganese-peroxidase (MnP). and was decarboxylated by the mediation of veratryl alcohol and Mn. Oxalate was shown to regulate the mineralization of lignin in the in vivo system of Phanerochaete chrysosporium . In the brown-rot wood decay process, oxalic acid may serve as an acid catalyst as well as an electron donor for the Fenton reaction, to breakdown cellulose and hemicellulose. Oxaloacetase and glyoxylate oxidase may play a key role in production of oxalic acid by white-rot and brown-rot basidiomycetes such as Phanerochaete chrysosporium, Coriolus versicolor and Tyromyces palustris . A possible role of oxalate metabolism is discussed in relation to the physiology of wood-rotting fungi.  相似文献   
7.
To investigate the response of Scenedesmus obliquus to changes in metabolic carbon flux, S. obliquus was cultured in medium with different concentrations of glyoxylate over 9 days. Results showed that growth rates were not affected in the lower concentration glyoxylate (0.25 and 0.5 mM). However, growth rate of S. obliquus was inhibited in the higher concentration glyoxylate (0.85 and 1.25 mM) during the early phase before recovering at higher densities. Changes in growth rates in different glyoxylate concentrations were in line with changes in Fv/Fm and ΦPSII. Colony formation was observed in S. obliquus in the four glyoxylate treatments. As a consequence, the mean number of cells per particle of S. obliquus in the glyoxylate treatments were significantly higher than those in the control. The total polysaccharide content of S. obliquus cells increased with increased glyoxylate concentrations. The increased glyoxylate-stimulated polysaccharide levels were directly correlated with colony size of S. obliquus.  相似文献   
8.
Acetohydroxy acid synthase (AHAS) and related enzymes catalyze the production of chiral compounds [(S)-acetolactate, (S)-acetohydroxybutyrate, or (R)-phenylacetylcarbinol] from achiral substrates (pyruvate, 2-ketobutyrate, or benzaldehyde). The common methods for the determination of AHAS activity have shortcomings. The colorimetric method for detection of acyloins formed from the products is tedious and does not allow time-resolved measurements. The continuous assay for consumption of pyruvate based on its absorbance at 333 nm, though convenient, is limited by the extremely small extinction coefficient of pyruvate, which results in a low signal-to-noise ratio and sensitivity to interfering absorbing compounds. Here, we report the use of circular dichroism spectroscopy for monitoring AHAS activity. This method, which exploits the optical activity of reaction products, displays a high signal-to-noise ratio and is easy to perform both in time-resolved and in commercial modes. In addition to AHAS, we examined the determination of activity of glyoxylate carboligase. This enzyme catalyzes the condensation of two molecules of glyoxylate to chiral tartronic acid semialdehyde. The use of circular dichroism also identifies the product of glyoxylate carboligase as being in the (R) configuration.  相似文献   
9.
Citrate synthase is the initial enzyme in the tricarboxylic acid cycle of mitochondria. In plants and fungi, it is the second isozyme in the glyoxylate cycle of peroxisomes (or glyoxysomes), and it is also present in bacteria. Some of the biochemical reactions in the glyoxylate cycle of the ciliated protozoan Tetrahymena pyriformis depend upon mitochondrial enzymes, as T. pyriformis lacks some glyoxysome-specific enzymes. Here we demonstrate a new citrate synthase gene from Tetrahymena thermophila that is different from the mitochondrial counterpart. A potential peroxysome-targeted signal was detected in the N-terminus, suggesting the localization of the enzyme in peroxysomes. Phylogenetic analysis placed the Tetrahymena sequence in a clade consisting of a few sequences from eukaryotes such as cellular slime molds and two land plants, near a green sulfur bacterium and many proteobacteria as a sister group but not in a mitochondrial clade. Southern blot analysis revealed that this type of gene was absent from distantly related ciliates and other species of Tetrahymena except for the closest species, T. mallaccensis. The scattered presence of the bacterial-like genes among distantly related eukaryotes suggests three alternative interpretations of acquisition of the novel glyoxysomal citrate synthase gene via lateral gene transfer (LGT). (1) Some eukaryotes independently acquired the gene from a common bacterium or closely related bacteria via LGT. (2) A hypothetical eukaryote once acquired the gene, which was thereafter independently transferred from the eukaryote to other eukaryotes. (3) A single event of LGT (or duplication) occurred in a certain common ancestor of eukaryotes, followed by multiple losses in many eukaryotic lineages during the subsequent evolution. Considering the monophyly of the bacterial-like eukaryotic citrate synthase genes, the first model is somewhat unlikely, even though it is not impossible. The second and third models can rationally explain the present observation, so these models are discused in some detail.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号