首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   5篇
  国内免费   1篇
  2021年   1篇
  2019年   5篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   12篇
  2012年   3篇
  2011年   13篇
  2010年   14篇
  2009年   14篇
  2008年   12篇
  2007年   10篇
  2006年   16篇
  2005年   12篇
  2004年   5篇
  2003年   13篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
1.
A cytosolic, macromolecular factor required for the cholera toxin-dependent activation of pigeon erythrocyte adenylate cyclase and cholera toxin-dependent ADP-ribosylation of a membrane-bound 43 000 dalton polypeptide has been purified 1100-fold from horse erythrocyte cytosol using organic solvent precipitation and heat treatment. This factor, 13 000 daltons, does not absorb to anionic or cationic exchange resins, is sensitive to trypsin or 10% trichloroacetic acid and is not extractable by diethyl ether. Activation of adenylate cyclase by cholera toxin requires the simultaneous presence of ATP (including possible trace GTP), NAD+, dithiothreitol, cholera toxin, membranes and the cytosolic macromolecular factor. Reversal of cholera toxin activation of adenylate cyclase, and of the toxin-dependent ADP-ribosylation, requires the presence of the cytosolic factor. The ability of the purified cytosolic factor to influence the hormonal sensitivity of liver membrane adenylate cyclase may provide clues to its physiological functions.  相似文献   
2.
The available amino acid sequences of the α-amylase family (glycosyl hydrolase family 13) were searched to identify their domain B, a distinct domain that protrudes from the regular catalytic (β/α)8-barrel between the strand β3 and the helix α3. The isolated domain B sequences were inspected visually and also analyzed by Hydrophobic Cluster Analysis (HCA) to find common features. Sequence analyses and inspection of the few available three-dimensional structures suggest that the secondary structure of domain B varies with the enzyme specificity. Domain B in these different forms, however, may still have evolved from a common ancestor. The largest number of different specificities was found in the group with structural similarity to domain B from Bacillus cereus oligo-1,6-glucosidase that contains an α-helix succeeded by a three-stranded antiparallel β-sheet. These enzymes are α-glucosidase, cyclomaltodextrinase, dextran glucosidase, trehalose-6-phosphate hydrolase, neopullulanase, and a few α-amylases. Domain B of this type was observed also in some mammalian proteins involved in the transport of amino acids. These proteins show remarkable similarity with (β/α)8-barrel elements throughout the entire sequence of enzymes from the oligo-1,6-glucosidase group. The transport proteins, in turn, resemble the animal 4F2 heavy-chain cell surface antigens, for which the sequences either lack domain B or contain only parts thereof. The similarities are compiled to indicate a possible route of domain evolution in the α-amylase family. Received: 4 December 1996 / Accepted: 13 March 1997  相似文献   
3.
Golgi α-mannosidase II (GMII) is a Family 38 glycosyl hydrolase involved in the eukaryotic N-glycosylation pathway in protein synthesis. Understanding of its catalytic mechanism has been of interest for the development of specific inhibitors that could lead to novel anti-metastatic or anti-inflammatory compounds. The active site of GMII has been characterized by structural studies of the Drosophila homologue (dGMII) and unusually contains a Zn atom which forms contacts with substrate analogues, stabilized catalytic intermediates, and other inhibitors observed in the active site. In this contribution, we analyze the structure of the sugar mimetic compound noeuromycin complexed with dGMII. Distortions of the conformation of this inhibitor, together with similar observations from other complexes, have permitted us to propose specific roles for the Zn atom in the chemical mechanism of catalysis of Family 38 glycosidase. Such insights have relevance to efforts to formulate novel, specific inhibitors of GMII.  相似文献   
4.
ABSTRACT

Reaction of glycosyl isothiocyanate 1a-c with 3-indolylaminomethyl-ketone hydrochloride(2) yielded glycosylthiourea derivatives 3a-c. Cyclodehydration of 3a-c with acetic anhydride afforded 5-(indol-3-yl)-2-[N-per-O-acetyl-D-glycopyranosyl)amino]thiazoles 4a-c. Deacetylation of 4a-c gave 5-(indol-3-yl)-2-[N-(D-glycopyranosyl) amino]thiazoles 5a-c.  相似文献   
5.
New acylated 5‐thio‐β‐d‐glucopyranosylimino‐disusbstituted 1,3,4‐thiadiazols 8, and 11 were prepared, via spontaneous rearrangements, by cycloaddition of the glycosyl isothiocyanate 2 with the reactive intermediates 1‐aza‐2‐azoniaallene hexachloroantimonates 4 and 6, respectively. Reaction of 2 with aminoacetone or chloroethylamine afforded the acylated 5‐thio‐β‐d‐glucopyranosyl‐4‐imidazoline‐2‐thione nucleoside 16 and glucopyranosylamino‐2‐thiazoline derivative 18, respectively. Deblocking of 8, 11, 17 and 19 furnished the free nucleoside analogues 9, 12, 18 and 20, respectively. Analogously, treatment of 2 with chloroethylamine in the 1:2 ratio afforded the thioureylendisaccharide 21. No in vitro antiviral activity against HIV‐1, HIV‐2, human cytomegallovirus (HMCV), has been found for the new synthesized compounds.  相似文献   
6.
Abstract

A response surface methodology was used to build a model to predict reductions in uropathogenic Escherichia coli biofilms in response to three compounds: cranberry extract [CB] at 3.0–9.0%, and caprylic acid [CAR] and thymol [TM] at 0.01%–0.05%. The predictive model for microbial reduction had a high regression coefficient (R2?=?0.9988), and the accuracy of the model was verified (R2?=?0.9527). Values of CAR, TM, and the quadratic term CAR2 were the most significant (P?10 reduction) determined by ridge analysis were 8.3% CB +0.04% CAR +0.04% TM at 37?°C for 1?min. The model could be used to predict the most cost-efficient amounts of antimicrobial agents for anti-urinary tract infection products such as catheter lock solution and antimicrobial coatings for catheters.  相似文献   
7.
Armed deoxyhexose glycosyl donors are very reactive and sometimes too uncontrollably activated in glycosylation reactions; yields can be thereby reduced, especially when unreactive glycosyl acceptors are involved. In this paper, the behaviour of a range of deoxyhexose trihaloacetimidate (trichloro- and N-phenyl trifluoro-) donors is compared in some selected glycosylations towards biologically relevant targets. The selected N-phenyl trifluoroacetimidates often afforded best results in terms of both donor synthesis and glycosylation yield.  相似文献   
8.
An environmentally benign and stereoselective beta-mannopyranosylation has been developed employing 4,6-O-benzylidene-protected mannopyranosyl diethyl phosphite as a glycosyl donor and montmorillonite K-10 as an activator.  相似文献   
9.
A simple and efficient method is developed for the chemoselective one-pot conversion of ethers (benzyl, TBDMS and acetal) to the corresponding benzoates by zinc triflate-catalyzed deprotection and benzoylation by benzoyl bromide. In the same reaction, methyl or p-methoxyphenyl glycosides are converted into glycosyl bromides that are useful in glycosylation reactions.  相似文献   
10.
Samuel G  Reeves P 《Carbohydrate research》2003,338(23):2503-2519
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号