首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   3篇
  2019年   2篇
  2018年   1篇
  2014年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   3篇
  2004年   5篇
  2002年   4篇
  2000年   1篇
  1999年   2篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有52条查询结果,搜索用时 609 毫秒
1.
Modulation of Ganglioside Biosynthesis in Primary Cultured Neurons   总被引:11,自引:4,他引:7  
Murine cerebellar cells were pulse labeled with [14C]galactose, and the incorporation of radioactivity into gangliosides and neutral glycosphingolipids was examined under different experimental conditions. In the presence of drugs affecting intracellular membrane flow, as well as at 15 degrees C, labeled GlcCer was found to accumulate in the cells, whereas the labeling of higher glycosphingolipids and gangliosides was reduced. Monensin and modulators of the cytoskeleton effectively blocked biosynthesis of the complex gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, whereas incorporation of radioactivity into neutral glycosphingolipids, such as glucosylceramide and lactosylceramide, as well as GM3, GM2, and GD3 was either increased or unaltered. As monensin has been reported to interfere with the flow of molecules from the cis to the trans stacks of the Golgi apparatus, this result highlights at least one subcompartmentalization of ganglioside biosynthesis within the Golgi system. Inhibitors of energy metabolism affected, predominantly, the biosynthesis of the b-series gangliosides, whereas a reduced temperature (15 degrees C) more effectively blocked incorporation of radiolabel into the a-series gangliosides, a result suggesting the importance of GM3, as the principal branching point, for the regulation of ganglioside biosynthesis.  相似文献   
2.
Abstract: Compositions of neutral and sulfated glucuronyl glycosphingolipids purified from human motor and sensory nerves and myelins were studied. Higher neutral glycosphingolipids (fraction B), which were separated from GazlCer (fraction A), were analyzed by TLC and TLC-immunostaining. Both nerve myelins contained paragloboside (nLc4Cer) and nLc6Cer dominantly as major higher glycosphingolipids and very little globoside (Gb4Cer), whereas both nerves contained Gb4Cer and nLc4Cer. Besides these major glycosphingolipids, a neutral glycolipid containing asialoGMI (Gg4Cer) epitope and other minor components such as ceramide trihexoside and ceramide dihexoside were detected in both nerves and their myelins. Furthermore, sulfated glucuronyl nLc4Cer and n Lc6Cer, which were monoclonal antibody HNK-1 reactive glycolipids, were detected in both nerves and myelins.  相似文献   
3.
Vance DE 《FEBS letters》2006,580(23):5430-5435
There are numerous examples of how fundamental research has been required to understand and treat human disease. This article focuses on three human diseases of lipid metabolism in which advancements in understanding and treatment would not have been possible without basic research. Fabry disease is an inherited metabolic disorder caused by the lack of a specific enzyme in glycosphingolipid catabolism. Cardiovascular disease is a complex and multifactorial disease but as many as half of the cases can be attributed to abnormal levels of plasma cholesterol. The incidence of liver disease is increasing due to the current epidemic of obesity. It is only recently that curiosity-driven research has yielded valuable insight into the mechanism by which liver disease evolves.  相似文献   
4.
Sphingolipids are a family of lipids that play essential roles both as structural cell membrane components and in cell signalling. The cellular contents of the various sphingolipid species are controlled by enzymes involved in their metabolic pathways. In this context, the discovery of small chemical entities able to modify these enzyme activities in a potent and selective way should offer new pharmacological tools and therapeutic agents.  相似文献   
5.
The expanding field of glycobiology requires tools for the synthesis of structurally defined oligosaccharides and glycoconjugates, while any potential therapeutic applications of sugar-based derivates would require access to substantial quantities of such compounds. Classical chemical approaches are not well suited for such large-scale syntheses, thus enzymatic approaches are sought. Traditional routes to the enzymatic assembly of oligosaccharides have involved the use of either Nature’s own biosynthetic enzymes, the glycosyl transferases, or glycosidases run in transglycosylation mode. However, each approach has drawbacks that have limited its application. Glycosynthases are mutant glycosidases in which the catalytic nucleophile has been replaced by mutation, inactivating them as hydrolases. When used in conjunction with glycosyl fluorides of the opposite anomeric configuration to that of the substrate, these enzymes function as highly efficient transferases, frequently giving stoichiometric yields of products. Further improvements can be obtained through directed evolution of the gene encoding the enzyme in question, but this requires the ability to screen very large libraries of catalysts. In this review we survey new screening methods for the formation of glycosidic linkages using high-throughput techniques, such as FACS, chemical complementation, and robot-assisted ELISA assays. Enzymes were evolved to have higher catalytic activity with their natural substrates, to show altered substrate specificities or to be promiscuous for efficient application in oligosaccharide, glycolipid, and glycoprotein synthesis.  相似文献   
6.
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport.  相似文献   
7.
Soluble gangliosides in cultured neurotumor cells   总被引:3,自引:3,他引:0  
Abstract: The biosynthesis and degradation of glycosphingolipids were studied in cytosolic and membrane fractions obtained from rat glioma C6 cells. Both pools had a similar composition of neutral glycosphingolipids but the soluble pool contained only a few percent of the total. The major ganglioside in C6 cells was GM3, of which only 2% was soluble. Whereas the bulk of the membrane GM3 was accessible to surface labeling procedures, the soluble GM3 was not. Mouse neuroblastoma N18 cells also contained small amounts of cytoplasmic gangliosides corresponding to GM3, GM2, GM1, and GDla. When C6 cells were incubated with medium containing [3H]galactose at 37°C, the specific activity of soluble GM3 initially increased more rapidly than that of membrane GM3; by 4 h, the specific activities in both pools became equal. Total incorporation into the membrane pool, however, was always several-fold greater even at the shortest incubation times examined. The labeling pattern of neutral glycosphingolipids in both soluble and membrane fractions indicated the existence of a precursor-product relationship between glucosylceramide and other glycosphingolipids. When labeled cells were transferred to nonradioactive medium, glucosylceramide disappeared the most rapidly, with a 50% loss within <6 h. The turnover rates of other glycosphingolipids were much slower. Although cytosolic GM3 was degraded more rapidly (t1/2= 26 h) than membrane-bound GM3 (t1/2= 44 h), its turnover rate was much slower than the time required for transport of GM3 to the cell surface (20–30 min). Our results are consistent with the existence of a small intracellular pool of soluble gangliosides and neutral glycosphingolipids that is stable and independent of the main membrane-bound pool. Although the role of these cytosolic glycolipids is unknown, they do not appear to represent a transport pool between the site of synthesis and the plasma membrane.  相似文献   
8.
The quantitative contribution of glucose to the biosynthesis of lactosyl-ceramide and other glycosphingolipids was studied in the adult rat brain in vivo using a semicompartmental model. Half-lives of glucose carbon in both the total carbon pool and the carbohydrate residue of the lipid were calculated. In all glycolipids the half-life of carbohydrate units was six to eight times shorter than the half-life of carbon in the total carbon pool of the same lipid. This carbohydrate half-life appears to be closely related to the turnover rate of the glycolipid. The shortest carbohydrate half-life (2.2 days) was obtained for lactosyl-ceramide followed by gangliosides. galactosyl-ceramides, and sulphatides. The results indicate that lactosyl-ceramide may serve as a branch point for the biosynthesis of cerebral gangliosides in vivo rather than occur as a breakdown product of more complex molecules.  相似文献   
9.
Crispins A (1) and B (2), two new glycosphingolipids, were isolated from the whole plant Buddleja crispa, along with three known compounds: alpha-amyrin, linoleic acid, and stigmasterol. Their structures were elucidated by chemical and spectroscopic techniques. Both 1 and 2 showed significant inhibitory activity against alpha-chymotrypsin in a concentration-dependent manner.  相似文献   
10.
Kacher Y  Futerman AH 《FEBS letters》2006,580(23):5510-5517
Although diseases in the pathway of sphingolipid degradation have been known for decades, the first disease in the biosynthetic pathway was only reported in 2004, when a form of infantile-onset symptomatic epilepsy was described as a genetic defect in GM3 synthase. Presumably other diseases in the sphingolipid biosynthetic pathway will yet be discovered, although many may remain undetected due to their putative lethal phenotypes. In contrast, diseases are known for essentially every step in the pathway of SL degradation, caused by the defective activity of one or other of the lysosomal hydrolases in this pathway. Despite the fact that some of these storage disorders were first discovered in the 19th century, the cellular and biochemical events that cause pathology are still poorly delineated. In this review, we focus on recent advances in our understanding of how defects in the pathways of sphingolipid metabolism may lead to pathology. In addition, we discuss currently-available and emerging therapeutic options.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号