首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2007年   1篇
  2004年   1篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1983年   1篇
  1978年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Tartrate dehydrogenase catalyzes the reductive decarboxylation of meso-tartrate to glycerate. Concomitant with the ketonization of the intermediate enolate the C3 hydroxymethylene of glycerate necessarily acquires a proton from solvent. In D2O, the proton is shown to be added stereospecifically to form (2R,3R)-[3-2H]glycerate. The 1H-NMR assignments of the diastereotopic C3 protons of glycerate were confirmed by the enzymatic conversion of [1R-2H]fructose-6-phosphate to (2R,3R)-[3-2H]glycerate. The decarboxylation-protonation occurs with retention of configuration, implying that the general acid is positioned on the same face of the intermediate as the departing carboxylate. The stereochemically pure (2R,3R)-[3-2H]glycerate is readily synthesized and serves as a chiral hydroxymethylene synthon as demonstrated by the synthesis of (2S,3R)-[3-2H]serine.  相似文献   
2.
Metabolic control associated with diauxic growth of Pseudomonas oxalaticus in batch cultures on mixtures of formate and oxalate was investigated by measuring intracellular enzyme and coenzyme concentrations and Q O 2values during transition experiments from oxalate to formate and vice versa. In transition from oxalate to formate oxalyl-CoA reductase concentration declined after the exhaustion of oxalate and ribulose-1,5-diphosphate carboxylase and 14CO2 fixation appeared upon addition of formate. In the reciprocal transition, ribulose-1,5-diphosphate carboxylase and 14CO2 fixation rate declined sharply after formate exhaustion, and oxalyl-CoA reductase appeared only after addition of oxalate. The intracellular NAD and NADP concentrations measured in the same experiments are reported. At substrate exhaustion the proportion of NAD in the reduced form fell from 15–20% to 2%. On addition of formate to an oxalate-starved culture there was an immediate increase in the proportion of NADH to 50%; such an increase was not observed in the reverse experiment.Abbreviations RuDP ribulose-1,5-diphosphate - HEPES 2-(N-2 hydroxyethylpiperazin-N-yl) ethane sulphonic acid  相似文献   
3.
Spinach (Spinacia oleracea L.) chloroplast NAD(P)-dependent glyceraldehyde 3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) was purified. The association state of the protein was monitored by fast protein liquid chromatography-Superose 12 gel filtration. Protein chromatographed in the presence of NADP+ and dithiothreitol consisted of highly NADPH-active protomers of 160 kDa; otherwise, it always consisted of a 600-kDa oligomer (regulatory form) favoured by the addition of NAD+ in buffers and with low NADPH-dependent activity (ratio of activities with NADPH versus NADH of 0.2–0.4). Glycerate 1,3-bisphosphate (BPGA) was prepared enzymatically using rabbit-muscle NAD-GAPDH, and purified. Among known modulators of spinach NAD(P)-GAPDH, BPGA is the most effective on a molar basis in stimulating NADPH-activity of dark chloroplast extracts and purified NAD(P)-GAPDH (activation constant, K a= 12 M). It also causes the enzyme to dissociate into 160-kDa protomers. The K m of BPGA both with NADPH or NADH as coenzyme is 4–7 M. NAD+ and NADH are inhibitory to the activation process induced by BPGA. This compound, together with NADP(H) and ATP belongs to a group of substrate-modifiers of the NADPH-activity and conformational state of spinach NAD(P)-GAPDH, all characterized by K a values three- to tenfold higher than the K m. Since NADP(H) is largely converted to NAD(H) in darkened chloroplasts Heineke et al. 1991, Plant Physiol. 95, 1131–1137, it is proposed that NAD+ promotes NAD(P)-GAPDH association into a regulatory conformer with low NADPH-activity during dark deactivation. The process is reversed in the light by BPGA and other substrate-modifiers whose concentration increases during photosynthesis, in addition to reduced thioredoxin.Abbreviations BPGA glycerate 1,3-bisphosphate - Chl chlorophyll - DTT dithiothreitol - FPLC fast protein liquid chromatography - NAD(P)-GAPDH glyceraldehyde 3-phosphate dehydrogenase, NAD(P)-dependent - 3-PGA glyerate 3-phosphate - PGK phosphoglycerate kinase - Prt protein - Tricine N-tris (hydroxymethyl) methyl-glycine This work was supported by grants from the Ministero dell'Università e della Ricerca Scientifica e Technologica in years 1990–1991. We are grateful to Dr. G. Branlant (Laboratoire d'Enzymologie et de Génie Génétique, Vandoeuvre les Nancy, France) for introducing us to the BPGA purification procedure.  相似文献   
4.
A glycerate kinase (GK) gene (PH0495) from the hyperthermophilic archaeon Pyrococcus horikoshii, was cloned and expressed in Escherichia coli. The recombinant protein was purified to homogeneity by affinity chromatography and ion exchange chromatography. The enzyme was likely a homodimer based on SDS-PAGE (47 kDa) and gel filtration chromatography (100 kDa) analysis. A radioisotope-labeling examination method was initially used for the enzymatic activity detection, and the enzyme (GKph) was found to catalyze the formation of 2-phosphoglycerate using d-glycerate as the substrate. The enzyme exhibited unique phosphoryl donor specificity with maximal activity towards pyrophosphate. The temperature and pH optima of the enzyme were 45°C and 7.0, respectively, and about half of the maximal activity remained at 100°C. The enzyme was highly thermostable with almost no loss of activity at 90°C for 12 h. Based on sequence alignment and structural comparison it was assigned to group I of the trichotomy of GKs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
5.
Glycerate kinase (GK; EC 2.7.1.31) from maize (Zea mays L.) leaves was purified by a sequence of ammonium-sulfate precipitations and chromatography on diethylaminoethyl-cellulose, hydroxyapatite, Sephadex G-75SF and dye ligand (Green A) columns. The purest preparation was almost 1300-fold enriched and had a specific activity of 68 mol · min-1 · (mg protein) -1. The enzyme was a monomer of a relative molecular mass (Mr) of 44 kDa (kdalton) as determined by gel filtration, electrophoresis in dissociating conditions and by immunoblots. The enzyme was only weakly recognized by polyclonal antibodies against purified spinach GK, indicating substantial differences in molecular structure of the two proteins. Highly reducing conditions stabilized GK activity and were required for activation of crude leaf enzyme. The enzyme had a broad pH optimum of 6.8–8.5, and formed 3-phosphoglycerate and ADP as reaction products. Apparent K ms for D-glycerate and Mg-ATP were 0.11 and 0.25 mM, respectively. The enzyme was strongly affected by a number of phosphoesters, especially by 3-phosphoglycerate (K i= 0.36 mM), fructose bisphosphates and nucleoside bisphosphates. Inhibition by 3-phosphoglycerate was competitive to Mg-ATP and noncompetitive to D-glycerate. Pyruvate was found noncompetitive to D-glycerate (K is=4 mM). The ratio of stromal concentration of Mg-ATP to phosphoesters, particularly to 3-phosphoglycerate, may be of importance in the regulation of GK during C4-photosynthesis.Abbreviations DEAE diethylaminoethyl - kDa kdalton - GAP-DH glyceraldehyde phosphate dehydrogenase - GK glycerate kinase - LDH lactate dehydrogenase - 2-ME 2-mercaptoethanol - Mr relative molecular mass - PEP phosphoenolpyruvate - PGA(PK) phosphoglycerate (phosphokinase) - PK pyruvate kinase - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis  相似文献   
6.
B. Halliwell 《FEBS letters》1983,151(2):313-316
Glycerate kinase from spinach leaves was purified to near homogeneity using PEG/MgCl2 fractionation, ion exchange, molecular sieving and affinity chromatography. The purified enzyme is a monomer of Mr 40 000, shows a pI-value of 4.8 and a broad pH optimum of 6.5–8.5 and is specific for D-isomer of glycerate. The high activity of crude enzyme (≈ 150 μmol. h?1.mg chl?1) indicates that glycerate kinase does not limit the oxidative photosynthetic carbon cycle.  相似文献   
7.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   
8.
Autotrophically grown cells of Chloroflexus aurantiacus B-3 were shown to possess activity of ATP-dependent malate lyase (acetylating CoA). ATP: malate lyase is supposed to be the specific enzyme of the cycle of the autotrophic CO2 fixation, in which pyruvate synthase, pyruvate phosphate dikinase, phosphoenolpyruvate (PEP) carboxylase and malate dehydrogenase are involved as well. The main product of the CO2 fixation cycle is glyoxylate, which could further be converted into 3-phosphoglyceric acid (3-PGA) in the reactions of either glycerate or serine pathway. The enzymes of both pathways were detected in C. auratiacus B-3. The results of the in vivo studies of glyxoylate and glycine metabolism, as well as the inhibitor analysis using fluoroacetate (FAc), isonicotinic acid hydrazide (INH), and 4-aminopterin (4-AP) confirm the operation of the proposed pathway in Chloroflexus.Abbreviations 3-PGA 3-phosphoglyceric acid - 4-AP 4-aminopterin - FAc fluoroacetate - INH isonicotinic acid hydrazide - MV methyl viologen - PEP phosphoenolpyruvate - THF tetrahydrofolate - TPP thiamine pyrophosphate  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号