首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2008年   1篇
  2007年   1篇
  1993年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Zhang F  Vasella A 《Carbohydrate research》2007,342(17):2546-2556
Partially deuteriated 1,5,6,6-(2)H(4)-d-glucose and 1(I),1(II),5(I),5(II),6(I),6(I),6(II),6(II)-(2)H(8)-d-cellobiose were synthesized in high yields and on a large scale from d-glucose. (2)H enrichment at C-5 and C-6 of each glucopyranosyl unit in excess of 85% and 90%, respectively, was realized by (1)H-(2)H exchange in (2)H(2)O containing deuteriated Raney Ni. Nucleophilic addition of LiAlD(4) to 5,6,6-(2)H(3)-2,3,4,6-tetra-O-benzyl-d-gluconolactone led to a 98% (2)H enrichment at C-1. Deuteriated cellobiose is of interest as building block for the synthesis of a model compound of cellulose I.  相似文献   
2.
Abstract: The presence of glycogen in astroglia-rich primary cultures derived from the brains of newborn rats depends on the availability of glucose in the culture medium. On glucose deprivation, glycogen vanishes from the astroglial cultures. This decrease of glycogen content is completely prevented if 2-deoxyglucose in a concentration of > 1 m M or 1,5-gluconolactone (20 m M ) is present in the culture medium. 2-Deoxyglucose itself or 3- O -methylglucose, a glucose derivative that is not phosphorylated by hexokinase, does not reduce the activity of glycogen phosphorylase purified from bovine brain or in the homogenate of astroglia-rich rat primary cultures. In contrast, deoxyglucose-6-phosphate strongly inhibits the glycogen phosphorylase activities of the preparations. Half-maximal effects were obtained at deoxyglucose-6-phosphate concentrations of 0.75 (phosphorylase a, astroglial culture), 5 (phosphorylase b, astroglial culture), 2 (phosphorylase a, bovine brain), or 9 m M (phosphorylase b, bovine brain). Thus, the block of glycogen degradation in these cells appears to be due to inhibition of glycogen phosphorylase by deoxyglucose-6-phosphate rather than deoxyglucose itself. These results suggest that glucose-6-phosphate, rather than glucose, acts as a physiological negative feedback regulator of the brain isoenzyme of phosphorylase and thus of glycogen degradation in astrocytes.  相似文献   
3.
The first example of a non-enzymatic C-2 epimerization of aldonolactones is reported. The reaction of 2,3,4,6-tetra-O-benzyl-d-gluconolactone or 2,3,4,6-tetra-O-benzyl-d-mannonolactone with MgI(2) in EtOH afforded their respective C-2 epimer. Studies conducted in EtOD showing the incorporation of a deuterium atom only at the C-2 position of the epimerized product reveal an epimerization rather than a racemization reaction. A mechanism involving a chelation with a magnesium species is proposed to explain this C-2 inversion reaction.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号