首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   0篇
  国内免费   1篇
  66篇
  2022年   2篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   8篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1990年   4篇
  1982年   2篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
Cell extracts of Fibrobacter succinogenes subsp. succinogenes S85 phosphorylated glucose with a GTP-dependent glucokinase. The enzyme showed little activity with ATP (12% of that with GTP). Of other phosphate donors tested, only dGTP and ITP gave high glucokinase activities. Dialyzed extracts required Mg+2 and K+ for maximal activity. In potassium phosphate buffer, glucokinase showed maximum activity at pH 7.5 with glucose-6-phosphate dehydrogenase as the coupling enzyme. In this assay, glucokinase was active with glucose (100%), 2-deoxy-d-glucose (40%), and mannose (20%). Partially purified glucokinase had a molecular weight of 82,000 and a pl of 4.82. Double-reciprocal plots of substrate concentration versus velocity were linear and the enzyme had apparent Km values of 55 M for glucose and 72 M for GTP. Dialyzed cell extracts of Fibrobacter intestinalis C1A also contained a GTP-dependent glucokinase that showed little activity with ATP. Potassium also stimulated the activity of this enzyme. These results suggest that this unusual glucokinase may be characteristic of the genus Fibrobacter.Abbreviations CHES cyclohexylaminoethanesulfonic acid - GK glucokinase - PEP phosphoenolpyruvate Published with the approval of the Director of the North Dakota Agricultural Experiment Station as journal article no. 2186  相似文献   
2.
Glucokinase (hexokinase IV) continues to be a compelling target for the treatment of type 2 diabetes given the wealth of supporting human genetics data and numerous reports of robust clinical glucose lowering in patients treated with small molecule allosteric activators. Recent work has demonstrated the ability of hepatoselective activators to deliver glucose lowering efficacy with minimal risk of hypoglycemia. While orally administered agents require a considerable degree of passive permeability to promote suitable exposures, there is no such restriction on intravenously delivered drugs. Therefore, minimization of membrane diffusion in the context of an intravenously agent should ensure optimal hepatic targeting and therapeutic index. This work details the identification a hepatoselective GKA exhibiting the aforementioned properties.  相似文献   
3.
Monogenic diabetes is caused by mutations that reduce β-cell function. While Sanger sequencing is the standard method used to detect mutated genes. Next-generation sequencing techniques, such as whole exome sequencing (WES), can be used to find multiple gene mutations in one assay. We used WES to detect genetic mutations in both permanent neonatal (PND) and type 1B diabetes (T1BD).A total of five PND and nine T1BD patients were enrolled in this study. WES variants were assessed using VarioWatch, excluding those identified previously. Sanger sequencing was used to confirm the mutations, and their pathogenicity was established via the literature or bioinformatic/functional analysis. The PND and T1BD patients were diagnosed at 0.1–0.5 and 0.8–2.7?years of age, respectively. Diabetic ketoacidosis was present at diagnosis in 60% of PND patients and 44.4% of T1BD patients. We found five novel mutations in five different genes. Notably, patient 602 had a novel homozygous missense mutation c.1295C?>?A (T432?K) in the glucokinase (GCK) gene. Compared to the wild-type recombinant protein, the mutant protein had significantly lower enzymatic activity (2.5%, p?=?0.0002) and Vmax (1.23?±?0.019 vs. 0.33?±?0.016, respectively; p?=?0.005). WES is a robust technique that can be used to unravel the etiologies of genetically heterogeneous forms of diabetes. Homozygous inactivating mutations of the GCK gene may have a significant role in PND pathogenesis.  相似文献   
4.
Glucokinase catalyzes phosphoryl group transfer from ATP to glucose to form glucose-6-phosphate in the first step of cellular metabolism. While the location of the ATP-binding site of glucokinase was proposed recently, limited information exists on its conformation or the key amino acids involved in substrate binding. Affinity labeling with phenylglyoxal is used to probe possible Arg residues involved in ATP binding. Electrospray ionization mass spectrometry indicates that reaction of purified glucokinase with phenylglyoxal results in as many as six or seven sites of modification, suggesting nonspecific modification. However, preincubation of glucokinase with glucose followed by reaction with phenylglyoxal reveals only two sites of modification. Glucokinase activity assays show that enzyme preincubated with glucose possesses residual activity corresponding to the fraction of unmodified enzyme observed by mass spectrometry, strongly suggesting that glucokinase preincubated with glucose is specifically labeled and inactivated upon modification by phenylglyoxal. The data support the existing conformational model of glucokinase.  相似文献   
5.
In order to clearly establish the properties of the enzymes responsible for hexose phosphorylation we have undertaken the separation and characterization of these enzymes present in tomato fruit (Martinez-Barajas and Randall 1996). This report describes the partial purification and characterization of glucokinase (EC. 2.7.1.1) from young green tomato fruit. The procedure yielded a 360-fold enrichment of glucokinase. Tomato fruit glucokinase is a monomer with a molecular mass of 53 kDa. Glucokinase activity was optimal between pH 7.5 and 8.5, preferred ATP as the phosphate donor (K m = 0.223 mM) and exhibited low activity with GTP or UTP. The tomato fruit glucokinase showed highest affinity for glucose (K m =65 μM). Activity observed with glucose was 4-fold greater than with mannose and 50-fold greater than with fructose. The tomato fruit glucokinase was sensitive to product inhibition by ADP (K i = 36 μM). Little inhibition was observed with glucose 6-phosphate (up to 15 mM) at pH 8.0; however, at pH 7.0 glucokinase activity was inhibited 30–50% by physiological concentrations of glucose 6-phosphate. Received: 4 October 1997 / Accepted: 10 January 1998  相似文献   
6.
Human hexokinase enzyme IV (EC 2.7.1.1) catalyzes the phosphorylation of glucose and regulates the level of glucose. This enzyme exhibits strong positive cooperativity due to an allosteric transition between an inactive form and a closed active form. This form can be stabilized by activators and, thus, can increase its turnover by a kinetic memory effect characterized by a slow decay to the inactive state. The structural details of this kinetic allostery are known. Several synthetic activators have been reported. We present a preliminary nuclear magnetic resonance (NMR) screening of a chemical library in search of molecules with some affinity for glucokinase (GK). The library, composed of eight molecules with known activity as well as molecules that display no interaction, has been tested using the FAXS (fluorine chemical shift anisotropy and exchange for screening) method, based on monitoring the R2 relaxation of the 19F spin. To ensure a valid interaction measurement, the enzyme was placed in the presence of glucose and magnesium. The binding signal of one known fluorinated ligand was measured by determining the displacement of the known ligand. This simple measure of the 19F signal intensity after an 80-ms spin echo correlates nicely with the EC50, opening a route for NMR screening of GK activators.  相似文献   
7.
The continued optimization of a series of glucokinase activators is described, including attempts to understand the interplay between molecular structure and the composite parameter of unbound clearance. These studies resulted in the discovery of a new scaffold for glucokinase activators and further exploration of this scaffold led to the identification of GKA60. GKA60 maintains an excellent balance of potency and physical properties whilst possessing a significantly different, but complimentary, pre-clinical pharmacokinetic profile compared with the previously disclosed compound GKA50.  相似文献   
8.
This minireview looks back at a century of glycolysis research with a focus on the mechanisms of flux regulation. Traditionally, glycolysis is regarded as a feeder pathway that prepares glucose for further catabolism and energy production. However, glycolysis is much more than that, in particular in those tissues that express the low affinity glucose-phosphorylating enzyme glucokinase. This enzyme equips the glycolytic pathway with a special steering function for the regulation of intermediary metabolism. In beta cells, glycolysis acts as a transducer for triggering and amplifying physiological glucose-induced insulin secretion. On the basis of these considerations, I have defined a glycolytic flux regulatory unit composed of the two fructose ester steps of this pathway with various enzymes and metabolites that regulate glycolysis.  相似文献   
9.
Guided by co-crystal structural information obtained from a different series we were exploring, a scaffold morphing and SBDD approach led to the discovery of the 1,4-disubstituted indazole series as a novel class of GKAs that potently activate GK in enzyme and cell assays. anti-diabetic OGTT efficacy was demonstrated with 29 in a rodent models of type 2 diabetes.  相似文献   
10.
高碳水化合物日粮对翘嘴红鲌生长、GK及GK mRNA表达的影响   总被引:6,自引:0,他引:6  
探讨不同碳水化合物(CHO)水平对翘嘴红NFDA5生长、葡萄糖激酶(GK)及GK基因表达的影响.选用540尾(40.73±0.44)g翘嘴红鲌,随机分成为高CHO组、中CHO组、无CHO组,每组设三个重复,饲养8周,测定鱼体生长、血液指标、GK活性及GK mRNA水平等指标.结果显示,随着CHO添加量的增加,鱼体特定生长率与死亡率呈下降趋势,饵料系数刚好相反.摄食后,血糖先上升后趋于平缓,其中高CHO组相对高,无糖组低;血浆甘油三酯先上升后下降再上升又下降,其中高CHO组相对高,中CHO组最低;无CHO组血浆胆固醇、中CHO组HK活性、高CHO组GDH相对较低,其他各组在投喂后都呈先上升后下降.GK活性总体呈上升趋势,各组在禁食时,检测不到GK活性,饲料CHO含量越高,GK活性也越高,但是GK mRNA的水平与CHO含量并不呈线性关系.血糖、GK活性与GK mRNA的水平之间有一定的相关性,摄食高CHO饲料可诱导GK酶活性及基因的表达,造成持续高血糖,这可能不利于生长.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号