首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2014年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Discrimination of tRNAGln is an integral function of several bacterial glutamyl-tRNA synthetases (GluRS). The origin of the discrimination is thought to arise from unfavorable interactions between tRNAGln and the anticodon-binding domain of GluRS. From experiments on an anticodon-binding domain truncated Escherichia coli (E. coli) GluRS (catalytic domain) and a chimeric protein, constructed from the catalytic domain of E. coli GluRS and the anticodon-binding domain of E. coli glutaminyl-tRNA synthetase (GlnRS), we show that both proteins discriminate against E. coli tRNAGln. Our results demonstrate that in addition to the anticodon-binding domain, tRNAGln discriminatory elements may be present in the catalytic domain in E. coli GluRS as well.  相似文献   
2.
The glutaminyl-tRNA synthetase (GlnRS) enzyme, which pairs glutamine with tRNAGln for protein synthesis, evolved by gene duplication in early eukaryotes from a nondiscriminating glutamyl-tRNA synthetase (GluRS) that aminoacylates both tRNAGln and tRNAGlu with glutamate. This ancient GluRS also separately differentiated to exclude tRNAGln as a substrate, and the resulting discriminating GluRS and GlnRS further acquired additional protein domains assisting function in cis (the GlnRS N-terminal Yqey domain) or in trans (the Arc1p protein associating with GluRS). These added domains are absent in contemporary bacterial GlnRS and GluRS. Here, using Saccharomyces cerevisiae enzymes as models, we find that the eukaryote-specific protein domains substantially influence amino acid binding, tRNA binding and aminoacylation efficiency, but they play no role in either specific nucleotide readout or discrimination against noncognate tRNA. Eukaryotic tRNAGln and tRNAGlu recognition determinants are found in equivalent positions and are mutually exclusive to a significant degree, with key nucleotides located adjacent to portions of the protein structure that differentiated during the evolution of archaeal nondiscriminating GluRS to GlnRS. These findings provide important corroboration for the evolutionary model and suggest that the added eukaryotic domains arose in response to distinctive selective pressures associated with the greater complexity of the eukaryotic translational apparatus. We also find that the affinity of GluRS for glutamate is significantly increased when Arc1p is not associated with the enzyme. This is consistent with the lower concentration of intracellular glutamate and the dissociation of the Arc1p:GluRS complex upon the diauxic shift to respiratory conditions.  相似文献   
3.
Many prokaryotes form the amide aminoacyl-tRNAs glutaminyl-tRNA and asparaginyl-tRNA by tRNA-dependent amidation of the mischarged tRNA species, glutamyl-tRNAGln or aspartyl-tRNAAsn. Archaea employ two such amidotransferases, GatCAB and GatDE, while bacteria possess only one, GatCAB. The Methanothermobacter thermautotrophicus GatDE is slightly more efficient using Asn as an amide donor than Gln (kcat/KM of 5.4 s−1/mM and 1.2 s−1/mM, respectively). Unlike the bacterial GatCAB enzymes studied to date, the M. thermautotrophicus GatCAB uses Asn almost as well as Gln as an amide donor (kcat/KM of 5.7 s−1/mM and 16.7 s−1/mM, respectively). In contrast to the initial characterization of the M. thermautotrophicus GatCAB as being able to form Asn-tRNAAsn and Gln-tRNAGln, our data demonstrate that while the enzyme is able to transamidate Asp-tRNAAsn (kcat/KM of 125 s−1/mM) it is unable to transamidate M. thermautotrophicus Glu-tRNAGln. However, M. thermautotrophicus GatCAB is capable of transamidating Glu-tRNAGln from H. pylori or B. subtilis, and M. thermautotrophicus Glu-tRNAAsn. Thus, M. thermautotrophicus encodes two amidotransferases, each with its own activity, GatDE for Gln-tRNA and GatCAB for Asn-tRNA synthesis.  相似文献   
4.
Glutamyl-tRNA synthetases (GluRS) provide Glu-tRNA for different processes including protein synthesis, glutamine transamidation and tetrapyrrole biosynthesis. Many organisms contain multiple GluRSs, but whether these duplications solely broaden tRNA specificity or also play additional roles in tetrapyrrole biosynthesis is not known. Previous studies have shown that GluRS1, one of two GluRSs from the extremophile Acidithiobacillus ferrooxidans, is inactivated when intracellular heme is elevated suggesting a specific role for GluRS1 in the regulation of tetrapyrrole biosynthesis. We now show that, in vitro, GluRS1 activity is reversibly inactivated upon oxidation by hemin and hydrogen peroxide. The targets for oxidation-based inhibition were found to be cysteines from a SWIM zinc-binding motif located in the tRNA acceptor helix-binding domain. tRNAGlu was able to protect GluRS1 against oxidative inactivation by hemin plus hydrogen peroxide. The sensitivity to oxidation of A. ferrooxidans GluRS1 might provide a means to regulate tetrapyrrole and protein biosynthesis in response to extreme changes in both the redox and heme status of the cell via a single enzyme.  相似文献   
5.
Through functional studies of mutant tRNAs, we have identified sequence and/or structural features important for specifying the many distinctive properties of E coli initiator tRNA. Many of the mutant tRNAs contain an anticodon sequence change from CAU→CUA and are now substrates for E coli glutaminyl-tRNA synthetase (GlnRS). We describe here the effect of further mutating the discriminator base 73 and nucleotide 72 at the end of the acceptor stem on: i) recognition of the mutant tRNAs by E coli GlnRS; ii) recognition by E coli methionyl-tRNA transformylase; and iii) activity of the mutant tRNAs in initiation in E coli. For GlnRS recognition, our results are, in general, consistent with interactions found in the crystal structure of the E coli GlnRS-glutamine tRNA complex. The results also support our previous conclusion that formylation of initiator tRNA is important for its function in initiation.  相似文献   
6.
Aminoacyl-tRNA for protein synthesis is produced through the action of a family of enzymes called aminoacyl-tRNA synthetases. A general rule is that there is one aminoacyl-tRNA synthetase for each of the standard 20 amino acids found in all cells. This is not universal, however, as a majority of prokaryotic organisms and eukaryotic organelles lack the enzyme glutaminyl-tRNA synthetase, which is responsible for forming Gln-tRNAGln in eukaryotes and in Gram-negative eubacteria. Instead, in organisms lacking glutaminyl-tRNA synthetase, Gln-tRNAGln is provided by misacylation of tRNAGln with glutamate by glutamyl-tRNA synthetase, followed by the conversion of tRNA-bound glutamate to glutamine by the enzyme Glu-tRNAGln amidotransferase. The fact that two different pathways exist for charging glutamine tRNA indicates that ancestral prokaryotic and eukaryotic organisms evolved different cellular mechanisms for incorporating glutamine into proteins. Here, we explore the basis for diverging pathways for aminoacylation of glutamine tRNA. We propose that stable retention of glutaminyl-tRNA synthetase in prokaryotic organisms following a horizontal gene transfer event from eukaryotic organisms (Lamour et al. 1994) was dependent on the evolving pool of glutamate and glutamine tRNAs in the organisms that acquired glutaminyl-tRNA synthetase by this mechanism. This model also addresses several unusual aspects of aminoacylation by glutamyl- and glutaminyl-tRNA synthetases that have been observed.Based on a presentation made at a workshop—Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: D. Söll  相似文献   
7.
Glutaminyl-tRNA synthetase and asparaginyl-tRNA synthetase evolved from glutamyl-tRNA synthetase and aspartyl-tRNA synthetase, respectively, after the split in the last universal communal ancestor (LUCA). Glutaminyl-tRNAGln and asparaginyl-tRNAAsn were likely formed in LUCA by amidation of the mischarged species, glutamyl-tRNAGln and aspartyl-tRNAAsn, by tRNA-dependent amidotransferases, as is still the case in most bacteria and all known archaea. The amidotransferase GatCAB is found in both domains of life, while the heterodimeric amidotransferase GatDE is found only in Archaea. The GatB and GatE subunits belong to a unique protein family that includes Pet112 that is encoded in the nuclear genomes of numerous eukaryotes. GatE was thought to have evolved from GatB after the emergence of the modern lines of decent. Our phylogenetic analysis though places the split between GatE and GatB, prior to the phylogenetic divide between Bacteria and Archaea, and Pet112 to be of mitochondrial origin. In addition, GatD appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, while GatDE is an archaeal signature protein, it likely was present in LUCA together with GatCAB. Archaea retained both amidotransferases, while Bacteria emerged with only GatCAB. The presence of GatDE has favored a unique archaeal tRNAGln that may be preventing the acquisition of glutaminyl-tRNA synthetase in Archaea. Archaeal GatCAB, on the other hand, has not favored a distinct tRNAAsn, suggesting that tRNAAsn recognition is not a major barrier to the retention of asparaginyl-tRNA synthetase in many Archaea.  相似文献   
8.
Recently we have sequenced cDNA of plant glutaminyl-tRNA synthetase (GlnRS) from Lupinus luteus. At the N terminal part the protein contains a lysine rich polypeptide (KPKKKKEK), which is identical to a nuclear localization signal (NLS). In this paper we showed that two synthetic peptides (20 and 8 amino acids long), which were derived from lupin GlnRS containing the NLS sequence interact with DNA, but one of them (8aa long) changing its conformation from the B to the Z form. This observation clearly suggests that the presence of the NLS polypeptide in a leader sequence of GlnRS is required not only for protein transport into nucleus but also for regulation of a gene expression. This is the first report suggesting a role of the NLS signal peptide in structural changes of DNA.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号