首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  国内免费   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2004年   5篇
  2003年   1篇
排序方式: 共有18条查询结果,搜索用时 62 毫秒
1.
Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.  相似文献   
2.
Geminin binds to Cdt1 to ensure that DNA replication occurs only once during the cell cycle. To identify the peptide that binds to Geminin and thereby modifies the latter's ability to alter the DNA replication activity in human cancer cells, we screened a phage display library of random peptides in successive cycles of phage library panning and found one peptide sequence that bound to the 31-111 amino acid residues of Geminin. Delivery of this peptide sequence into the nucleus of HCT116 human colon cancer cells resulted in the suppression of BrdU incorporation. These results provide new insights into the function of Geminin and further validate Geminin as a potential therapeutic target in tumors.  相似文献   
3.
4.
5.
Cdt1 is a conserved replication factor required in licensing the chromosome for a single round of DNA synthesis. The activity of Cdt1 is inhibited by geminin. The mechanism by which geminin interferes with Cdt1 activity is unknown. It is thought that geminin binds to and sequestrate Cdt1. We show that geminin does not interfere with the chromatin association of Cdt1 and that inhibition of DNA synthesis by geminin is observed following its accumulation on chromatin. The binding of geminin to chromatin has been investigated during S phase. We demonstrate that loading of geminin onto chromatin requires Cdt1, suggesting that geminin is targeted at replication origins. We also show that geminin binds chromatin at the transition from the pre-replication to pre-initiation complexes, which overlaps with the release of Cdt1. This regulation is strikingly different from that observed in somatic cells where the chromatin binding of these proteins is mutually exclusive. In contrast to somatic cells, we further show that geminin is stable during the early embryonic cell cycles. These results suggest a specific regulation of origin firing adapted to the rapid cell cycles of Xenopus and indicate that periodic degradation of geminin is not relevant to licensing during embryonic development.  相似文献   
6.
Loss of Geminin induces rereplication in the presence of functional p53   总被引:20,自引:0,他引:20  
Strict regulation of DNA replication is essential to ensure proper duplication and segregation of chromosomes during the cell cycle, as its deregulation can lead to genomic instability and cancer. Thus, eukaryotic organisms have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. Here, we show that inactivation of Geminin, an inhibitor of origin licensing, leads to rereplication in human normal and tumor cells within the same cell cycle. We found a CHK1-dependent checkpoint to be activated in rereplicating cells accompanied by formation of gammaH2AX and RAD51 nuclear foci. Abrogation of the checkpoint leads to abortive mitosis and death of rereplicated cells. In addition, we demonstrate that the induction of rereplication is dependent on the replication initiation factors CDT1 and CDC6, and independent of the functional status of p53. These data show that Geminin is required for maintaining genomic stability in human cells.  相似文献   
7.
The initial step in initiation of eukaryotic DNA replication involves the assembly of pre-replicative complexes (pre-RCs) at origins of replication during the G1 phase of the cell cycle. In metazoans initiation is inhibited by the regulatory factor Geminin. We have purified the human pre-RC proteins, studied their interactions in vitro with each other and with origin DNA, and analyzed the effects of HsGeminin on formation of DNA-protein complexes. The formation of an initial complex containing the human origin recognition complex (HsORC), HsCdt1, HsCdc6, and origin DNA is cooperative, involving all possible binary interactions among the components. Maximal association of HsMCM2–7, a component of the replicative helicase, requires HsORC, HsCdc6, HsCdt1, and ATP, and is driven by interactions of HsCdt1 and HsCdc6 with multiple HsMCM2–7 subunits. Formation of stable complexes, resistant to high salt, requires ATP hydrolysis. In the absence of HsMCM proteins, HsGeminin inhibits the association of HsCdt1 with DNA or with HsORC-HsCdc6-DNA complexes. However, HsGeminin does not inhibit recruitment of HsMCM2–7 to DNA to form complexes containing all of the pre-RC proteins. In fact, HsGeminin itself is a component of such complexes, and interacts directly with the HsMcm3 and HsMcm5 subunits of HsMCM2–7, as well as with HsCdt1. Although HsGeminin does not prevent the initial formation of DNA-protein complexes containing the pre-RC proteins, it strongly inhibits the formation of stable pre-RCs that are resistant to high salt. We suggest that bound HsGeminin prevents transition of the pre-RC to a state that is competent for initiation of DNA replication.  相似文献   
8.
9.
Geminin was identified in Xenopus as a dual function protein involved in the regulation of DNA replication and neural differentiation. In Xenopus, Geminin acts to antagonize the Brahma (Brm) chromatin-remodeling protein, Brg1, during neural differentiation. Here, we investigate the interaction of Geminin with the Brm complex during Drosophila development. We demonstrate that Drosophila Geminin (Gem) interacts antagonistically with the Brm-BAP complex during wing development. Moreover, we show in vivo during wing development and biochemically that Brm acts to promote EGFR-Ras-MAPK signaling, as indicated by its effects on pERK levels, while Gem opposes this. Furthermore, gem and brm alleles modulate the wing phenotype of a Raf gain-of-function mutant and the eye phenotype of a EGFR gain-of-function mutant. Western analysis revealed that Gem over-expression in a background compromised for Brm function reduces Mek (MAPKK/Sor) protein levels, consistent with the decrease in ERK activation observed. Taken together, our results show that Gem and Brm act antagonistically to modulate the EGFR-Ras-MAPK signaling pathway, by affecting Mek levels during Drosophila development.  相似文献   
10.
It has been described that the replication regulator protein geminin is rapidly degraded at the end of mitosis and newly expressed at the beginning of the next S phase in the metazoan cell cycle. We have performed experiments to investigate the synthesis of geminin in cycling human HeLa cells. The levels of geminin-mRNA vary only modestly during the cell cycle with a 2-3-fold higher mRNA level at the G1/S phase transition, whereas newly synthesized geminin can only be detected in post-G1 phases. Surprisingly, geminin, once synthesized, does not remain stable, but is turned over during S phase with a half-life of 3-4h. We also show that geminin becomes phosphorylated as S phase proceeds and identify by MALDI mass spectrometry two specific major phosphorylation sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号