首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   1篇
  1998年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Maestro B  Sanz JM 《FEBS letters》2007,581(3):375-381
We have investigated the stability of the choline-binding module C-LytA against sodium dodecyl sulphate (SDS)-induced unfolding at pH 7.0 and 20 degrees C. A major intermediate with an unfolded N-terminal region accumulates at around 0.75 mM SDS, whereas 2.0 mM SDS was sufficient for a complete unfolding. This might be the first report of a protein being extensively unfolded by submicellar concentrations of SDS, occurring through formation of detergent clusters on the protein surface. All transitions were reversible upon SDS complexation with beta-cyclodextrin, allowing the calculation of thermodynamic parameters. A model for the unfolding of C-LytA by SDS is presented and compared to a previous denaturation scheme by guanidine hydrochloride.  相似文献   
2.
An essential consequence of growth factor-mediated signal transduction is the generation of intracellular H2O2. It operates as a second messenger in the control of actin microfilament dynamics, causing rapid and dramatic changes in the morphology and motile activity of stimulated cells. Little is understood about the molecular mechanisms causing these changes in the actin system. Here, it is shown that H2O2 acts directly upon several levels of this system, and some of the mechanistic effects are detailed. We describe the impact of oxidation on the polymerizability of non-muscle β/γ-actin and compare with that of muscle α-actin. Oxidation of β/γ-actin can cause a complete loss of polymerizability, crucially, reversible by the thioredoxin system. Further, oxidation of the actin impedes its interaction with profilin and causes depolymerization of filamentous actin. The effects of oxidation are critically dependent on the nucleotide state and the concentration of Ca2+. We have determined the crystal structure of oxidized β-actin to a resolution of 2.6 Å. The arrangement in the crystal implies an antiparallel homodimer connected by an intermolecular disulfide bond involving cysteine 374. Our data indicate that this dimer forms under non-polymerizing and oxidizing conditions. We identify oxidation of cysteine 272 in the crystallized actin dimer, likely to a cysteine sulfinic acid. In β/γ-actin, this is the cysteine residue most reactive towards H2O2 in solution, and we suggest plausible structural determinants for its reactivity. No other oxidative modification was obvious in the structure, highlighting the specificity of the oxidation by H2O2. Possible consequences of the observed effects in a cellular context and their potential relevance are discussed.  相似文献   
3.
In order to understand how inter-subunit association stabilizes oligomeric proteins, a single polypeptide chain variant of heptameric co-chaperonin GroES (tandem GroES) was constructed from Escherichia coli heptameric GroES by linking consecutively the C-terminal of one subunit to the N-terminal of the adjacent subunit with a small linker peptide. The tandem GroES (ESC7) showed properties similar to wild-type GroES in structural aspects and co-chaperonin activity. In unfolding and refolding equilibrium experiments using guanidine hydrochloride (Gdn-HCl) as a denaturant at a low protein concentration (50 microg ml(-1)), ESC7 showed a two-state transition with a greater resistance toward Gdn-HCl denaturation (Cm=1.95 M) compared to wild-type GroES (Cm=1.1 M). ESC7 was found to be about 10 kcal mol(-1) more stable than the wild-type GroES heptamer at 50 microg ml(-1). Kinetic unfolding and refolding experiments of ESC7 revealed that the increased stability was mainly attributed to a slower unfolding rate. Also a transient intermediate was detected in the refolding reaction. Interestingly, at the physiological GroES concentration (>1 mg ml(-1)), the free energy of unfolding for GroES heptamer exceeded that for ESC7. These results showed that at low protein concentrations (<1 mg ml(-1)), the covalent linking of subunits contributes to the stability but also complicates the refolding kinetics. At physiological concentrations of GroES, however, the oligomeric state is energetically preferred and the advantages of covalent linkage are lost. This finding highlights a possible advantage in transitioning from multi-domain proteins to oligomeric proteins with small subunits in order to improve structural and kinetic stabilities.  相似文献   
4.
The Escherichia coli outer membrane beta-barrel enzyme PagP and its homologues are unique in that the eight-stranded barrel is tilted by about 25 degrees with respect to the membrane normal and is preceded by a 19-residue amphipathic alpha-helix. To investigate the role of this helix in the folding and stability of PagP, mutants were generated in which the helix was deleted (Delta(1-19)), or in which residues predicted to be involved in helix-barrel interactions were altered (W17A or R59L). The ability of the variants to insert into detergent micelles or liposomes was studied in vitro using circular dichroism, fluorescence, Fourier transform infrared spectroscopy, electrophoretic mobility and gain of enzyme activity. The data show that PagP, initially unfolded in 5% (w/v) perfluoro-octanoic acid or 6 M guanidinium chloride, inserts spontaneously and folds quantitatively to an active conformation into detergent micelles of cyclofos-7 or into large vesicles of diC(12:0)-phosphatidylcholine (diC(12:0)PC), respectively, the latter in the presence of 7 M urea. Successful refolding of all variants into both micelles and liposomes ruled out an essential role for the helix or helix-barrel interactions in folding and membrane insertion. Measurements of thermal stability indicated that the variants R59L, W17A/R59L and Delta(1-19) were destabilised substantially compared with wild-type PagP. However, in contrast to the other variants, destabilisation of the W17A variant relative to wild-type PagP was much greater in liposomes than in micelles. Analysis of the kinetics of folding and unfolding of all variants in diC(12:0)PC liposomes suggested that this destabilisation arises predominantly from an increased dissociation of the refolded variant proteins from the lipid-inserted state. The data support the view that the helix of PagP is not required for folding and assembly, but instead acts as a clamp, stabilising membrane-inserted PagP after folding and docking with the membrane are complete.  相似文献   
5.
Light chain-associated (AL) amyloidosis is characterized by dominant fibril deposition of the variable domain (VL) of an immunoglobulin light chain, and thus its constant domain (CL) has been considered not to be amyloidogenic. We examined the in vitro fibril formation of the isolated CL in comparison with β2-microglobulin (β2-m), an immunoglobulin domain-like amyloidogenic protein responsible for dialysis-related amyloidosis. Two methods useful for β2-m at neutral pH also induced amyloid fibrils of CL, which were monitored by thioflavin-T binding and electron microscopy (EM). These results suggest that CL plays an important role, more than previously assumed, in the development of AL-amyloidosis.  相似文献   
6.
Heat shock protein 10 (hsp10) is a member of the molecular chaperones and works with hsp60 in mediating various protein folding reactions. GroES is a representative protein of hsp10 from Escherichia coli. Recently, we found that GroES formed a typical amyloid fibril from a guanidine hydrochloride (Gdn-HCl) unfolded state at neutral pH. Here, we report that other hsp10 homologues, such as human hsp10 (Hhsp10), rat mitochondrial hsp10 (Rhsp10), Gp31 from T4 phage, and hsp10 from the hyperthermophilic bacteria Thermotoga maritima, also form amyloid fibrils from an unfolded state. Interestingly, whereas GroES formed fibrils from either the Gdn-HCl unfolded state (at neutral pH) or the acidic unfolded state (at pH 2.0-3.0), Hhsp10, Rhsp10, and Gp31 formed fibrils from only the acidic unfolded state. Core peptide regions of these protein fibrils were determined by proteolysis treatment followed by a combination of Edman degradation and mass spectroscopy analyses of the protease-resistant peptides. The core peptides of GroES fibrils were identical for fibrils formed from the Gdn-HCl unfolded state and those formed from the acidic unfolded state. However, a peptide with a different sequence was isolated from fibrils of Hhsp10 and Rhsp10. With the use of synthesized peptides of the determined core regions, it was also confirmed that the identified regions were capable of fibril formation. These findings suggested that GroES homologues formed typical amyloid fibrils under acidic unfolding conditions but that the fibril core structures were different, perhaps owing to differences in local amino acid sequences.  相似文献   
7.
Protein self-association is critical to many biological functions. However, atomic-level structural characterization of these assemblies has remained elusive. In this report we present insights into the mechanistic details of the process of self-association of the 136-residue GTPase effector domain (GED) of the endocytic protein dynamin into a megadalton-sized soluble mass. Our approach is based on NMR monitoring of regulated folding and association through Gdn-HCl titration. The results suggest the evolution of a sequence–self-association paradigm. Equally significantly, the study demonstrates an elegant bottom-up strategy that can render large protein self-assemblies accessible to NMR investigations that have remained difficult to date.  相似文献   
8.
Green fluorescent protein (GFP) possesses a unique folding landscape with a dual basin leading to the hysteretic folding behavior observed in experiment. While theoretical data do not have the resolution necessary to observe details of the chromophore during refolding, experimental results point to the chromophore as the cause of the observed hysteresis. With the use of NMR spectroscopy, which probes at the level of the individual residue, the hysteretic intermediate state is further characterized in the context of the loosely folded isomerized native-like state {Niso} predicted in simulation. In the present study, several residues located in the lid of GFP indicate heterogeneity of the native states. Some of these residues show chemical shifts when the native-like intermediate {Niso} responsible for GFP's hysteretic folding behavior is trapped. Observed changes in the chromophore are consistent with increased flexibility or isomerization in {Niso} as predicted in recent theoretical work. Here, we observed that multiple chromophore environments within the native state are averaged in the trapped intermediate, linking chromophore flexibility to mispacking in the trapped intermediate. The present work is experimental evidence for the proposed final “locking” mechanism in GFP folding forming an incorrectly or loosely packed barrel under intermediate (hysteretic) folding conditions.  相似文献   
9.
In a previous study we found that 30-40% dimethylsulfoxide induces the active conformation of rabbit muscle pyruvate kinase. Because dimethylsulfoxide is known to perturb structure and function of many proteins, we have explored the effect of trehalose on the kinetics of thermal inactivation and stability of pyruvate kinase; this is because trehalose, in contrast to dimethyl sulfoxide, is totally excluded from the hydration shell of proteins. The results show that 600 mM trehalose inhibits the activity of pyruvate kinase by about 20% at 25 °C, however, trehalose protects pyruvate kinase from thermal inactivation at 60 °C, increases the Tmapp of unfolding by 7.2 °C, induces a more compact state, and stabilizes its tetrameric structure. The inactivation process is irreversible due to the formation of protein aggregates. Trehalose diminishes the rate of formation of intermediates with propensity to aggregate, but does not affect the extent of aggregation. Remarkably, trehalose affects the aggregation process by inducing aggregates with amyloid-like characteristics.  相似文献   
10.
Serine proteases coisolate with human very low density lipoproteins (VLDL) which degrade apolipoprotein E and cause hypertriglyceridemic VLDL to lose the ability to interact with the LDL receptor of human skin fibroblasts. We identified proteolytic fragments of apolipoprotein-E in isolated VLDL which can be produced by the action of thrombin on purified apoE. There are two major thrombin cleavage products: Mr ~ 22,000 (E-22) and Mr ~ 12,000 (E-12), the N- and C-terminal fragments, respectively, of apoE. We conclude that the structural integrity and the ability of VLDL to interact with cell receptors are a function of not only VLDL constituents but also of the extent to which VLDL apoprotein E has been degraded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号