首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   5篇
  国内免费   20篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   4篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2002年   2篇
  2001年   7篇
  2000年   1篇
  1999年   10篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有107条查询结果,搜索用时 15 毫秒
1.
本文对天麻种子消化入侵的紫萁小菇菌丝及营养繁殖茎消化蜜环菌过程中,细胞超微结构的变化进行了研究。观察结果表明:紫萁小菇侵入种胚后,染菌胚细胞的细胞器逐渐消失,其细胞质产生囊状体起消化菌丝的作用,存在于胚细胞中的紫萁小菇菌丝有脱壁或失去细胞质成为空腔等变化;种子萌发形成的原球茎消化紫萁小菇的方式同胚萌发阶段类同。蜜环菌侵入原球茎分化的营养繁殖茎后,皮层细胞产生消化酶类颗粒或囊状体包围并分解蜜环菌菌丝;被皮层细胞消化的菌丝残物或部分菌丝进入皮层内面的大型细胞,此时大型细胞的代谢功能显著增强,该细胞中的各种水解酶颗粒及液泡等完成对菌体物质的最终同化。紫萁小菇及蜜环菌先后在天麻有性繁殖和无性繁殖阶段侵染供给其营养,但菌丝被消化过程中的细胞形态变化、被消化方式不完全一致。  相似文献   
2.
分析不同升温时间对乌天麻(Gastrodia elata f.glauca)、红天麻(Gastrodia elata f.elata)箭麻生长习性、花期同步及杂交种子发育影响,为早期获得高质量天麻杂交种子材料,促进天麻杂交种高效育苗提供科学依据。对乌天麻和红天麻箭麻不同时间定植升温(22℃)下花茎出苗时间、始花时间、花茎高度、杂交种子质量等进行分析。结果显示,不同升温时间是影响箭麻出苗时间、始花时间的主要因素,乌天麻集中于2月中下旬出苗,红天麻升温10~15 d后陆续出苗;生态变型是影响箭麻生育期长短、花期花朵数的主要因素,乌天麻比红天麻生育期长21.47 d,对花期及蒴果采收期无较大影响,红天麻比乌天麻更易完成抽薹;不同升温时间条件下,乌天麻挂果率为87.76%,红天麻挂果率为94.53%;母本决定杂交种子质量,以红天麻为母本、乌天麻为父本所得杂交种子活性为94.32%,优于以乌天麻为母本、红天麻为父本所得杂交种子活性。因此,生产中应于1月中旬对乌天麻开始升温,待乌天麻出苗后(15 d左右)开始对红天麻升温催芽,使得乌天麻与红天麻于3月中上旬花期同步,4月初可获得优良杂交天麻种子。  相似文献   
3.
The orchid Gastrodia elata depends on the fungus Armillaria mellea to complete its life cycle. In the interaction, fungal hyphae penetrate older, nutritive corms but not newly formed corms. From these corms, a protein fraction with in vitro activity against plant-pathogenic fungi has previously been purified. Here, the sequence of gastrodianin, the main constituent of the antifungal fraction, is reported. Four isoforms that encoded two different mature proteins were identified at the cDNA level. Another isoform was detected in sequenced peptides. Because the antifungal activity of gastrodianins produced in and purified from Escherichia coli and Nicotiana tabacum was comparable to that of gastrodianin purified from the orchid, gastrodianins are the active component of the antifungal fractions. Gastrodianin accumulation is probably an important part of the mechanism by which the orchid controls Armillaria penetration. Gastrodianin was found to be homologous to monomeric mannose-binding proteins of other orchids, of which at least one (Epipactis helleborine mannose-binding protein) also displayed in vitro antifungal activity. This establishes the gastrodianin-like proteins (GLIPs) as a novel class of antifungal proteins.  相似文献   
4.
天麻抗真菌蛋白基因的克隆及其启动子活性   总被引:4,自引:0,他引:4  
通过构建和筛选天麻(Gastrodia elata Bl)基因组文库,克隆了一个天麻抗真菌蛋白基因组DNA。该基因组DNA含有一个516碱基组成的编码区。没有内含子结构。其启动子区含有保守的TATA盒及CAAT盒。为研究启动子活性。构建了-1157bp启动子区与GUS基因的融合表达载体。并将其用农杆菌(Agrobacterium tumefaciens)介导的遗传转化方法导入烟草(Nicotiana tabacum)中,获得了稳定转化的烟草。利用荧光检测及组织化学染色法对GUS表达进行了分析。结果表明,该启动子能够启动GUS基因在转基因烟草中组织特异性地表达。GUS基因在根中的表达水平最高。茎中次之,叶中只有低水平表达,而且该启动子具有诱导表达活性。可被真菌及水杨酸,茉莉酸强烈诱导表达。  相似文献   
5.
天麻的营养繁殖茎及其抑菌功能   总被引:1,自引:0,他引:1  
天麻9Gastrodia elata Bl.)与蜜环菌(Armillaria mellea (Vahl.ex Fr.)Quel.)营共生生活,在正常情况下蜜环菌只侵染种麻及分化生长出的营养繁殖茎的表皮、皮层及大型细胞层。种麻的大型细胞层及营养繁殖茎隔离区的空腔细胞层和木栓细胞层,都是种麻与新生麻的防御结构,它们保护新生麻不遭蜜环菌病理侵染而正常生长。冬季,天麻进入冬期,隔离区的木栓细胞层形成断裂层,此层细胞是新生麻能够安全越冬的最后一道防御结构。  相似文献   
6.
实验表明开唇兰小菇Mycena anoectochila可与天麻Gastrodia elata种子共生促进其萌发形成原球茎。 菌丝自胚柄端的柄状细胞侵入天麻种子原胚,进一步在皮层细胞中扩展,在外皮层细胞中形成发育良好的菌丝结,菌丝完整而有活力; 在内皮层细胞中则被消化,菌丝衰败、扁化。菌丝在原球茎细胞内的分布被限制在原球茎基部的柄状细胞、外皮层细胞和内皮层细胞,菌丝均被电子透明物质包围, 外围环绕有原球茎细胞质膜, 该界面使侵入的菌丝与原球茎细胞质相隔离,也是两共生生物间进行物质交换的所在。上述菌丝侵入至被消化的过程在整个原球茎发育过程中可反复进行。  相似文献   
7.
天麻Gastrodiaelata种子与石斛小菇Mycenadendrobii的共生萌发试验表明,石斛小菇可与天麻共生,促进天麻种子发芽并形成原球茎。菌丝主要分布于原球茎的柄状细胞、外皮层细胞和内皮层细胞,在外皮层细胞中形成菌丝结,内皮层细胞中的菌丝则被消化。原球茎细胞中的菌丝均被电子透明物质和原球茎细胞质膜包围而与原球茎细胞质相隔离,菌丝进一步液泡化并最终被水解。含有衰败菌丝的原球茎细胞常被菌丝重新定殖。这一菌丝被消化及菌丝的重新定殖过程在整个原球茎发育过程中可不断重复发生。  相似文献   
8.
Armillaria mellea penetrated protocorms from seed germination and vegetative multiplication corms of Gastrodia elata with rhizomorph. At beginning, they formed a hypha passing road and a hypha flow in the inner cells of cortex, and then, they both penetrated inside of large cells and penetrated outside of cortical cells. Gastrodia elata seeds depended on digesting Mycenct osmundicola etc gain nutrition to germinate at the stage of sexual reproduction, but its corms of vegetative multiplication must be penetrated by Armillaria mellea obtaining nutrition for normal growth at the stage of vegetative propagation.  相似文献   
9.
The orchid speices Gastrodia elata is a valuable traditional Chinese medicine and has been widely applied for treating a variety of diseases. The yield of wild Gelata is very limited since its vegetative growth is exclusively dependent on its symbiosis with the fungus Armillaria mellea, from which Gelata is able to obtain nutrients from rotten wood in the forest. To develop a standard for cultivating Gelata in large quantities, four factors that may influence the yield of Gelata need to be further investigated, including cultivation environment, inoculation volume of Armillaria, wood from different tree species, and the effect of fertilizer on the maturation of Gelata. To optimize these factors, a large scale orthogonal experiment was performed in the farmland of Xiaocaoba, Zhaotong, Yunnan Province. Among the four factors tested, inoculation of Armillaria played the most important role in the maturation of Gelata. The yield of mature tubers, in terms of both tuber weight and quantity, on open ground is greater than that in forested areas. Of the 12 tree species tested, Dipentodon sinicus stimulated the largest amount of growth of Armillaria and produced the greatest yield of Gelata in the farmland. In comparison to the other factors tested, fertilizer showed no effect on the yield of G-elata.  相似文献   
10.
The growth of Gastrodia elata Bl. and Armillaria mellea (Vahl. ex Fr.) Quel. shares a special symbiotic relation. In general, A. mellea invades the G. elata , the epidermal cells, the cortical cells and the large cells of the growing vegetative propagation corm of G. elata . The empty cavity cells, the cork cells of the isolation in the vegetative propagation corms and the large cells of G. elata were the defensive structure, protecting the new G. elata from pathological invasion by A. mellea . In winter, G. elata enters the stage of hibernation. The faulting layer derived from the cork cells of the isolation was the last defensive structure by which new G. elata could safely live through the winter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号