首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   160篇
  免费   5篇
  国内免费   16篇
  181篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   7篇
  2005年   5篇
  2004年   5篇
  2003年   7篇
  2002年   9篇
  2001年   2篇
  2000年   7篇
  1999年   9篇
  1998年   4篇
  1997年   6篇
  1996年   4篇
  1995年   2篇
  1994年   10篇
  1993年   8篇
  1992年   8篇
  1991年   5篇
  1990年   9篇
  1989年   2篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   2篇
  1984年   4篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有181条查询结果,搜索用时 0 毫秒
1.
2.
A root assessment tray was designed for the meticulous assessment of take-all on wheat seedling roots from soil bioassays. Subsequently, the detection of lateral root infections (in addition to the more obvious infections on main axes of seminal roots) resulted in increased estimates of propagule numbers of the take-all fungus (Gaeumannomyces graminis var.tritici) for 196 of the 368 soil samples bioassayed in a field study conducted in Western Australia between 1984 and 1986.  相似文献   
3.
Summary In comparative tests in a glasshouse, the cortex of oat and rye roots senesced more slowly than the cortex of wheat and barley roots. Of the cereals tested, wheat showed the most rapid rate of root cortical senescence, and the rate was unaffected by inoculation of leaves withErysiphe graminis. The results are discussed in relation to infection by root pathogens.  相似文献   
4.
Take-all is a world-wide root-rotting disease of cereals. The causal organism of take-all of wheat is the soil-borne fungus Gaeumannomyces graminis var tritici (Ggt). No resistance to take-all, worthy of inclusion in a plant breeding programme, has been discovered in wheat but the severity of take-all is increased in host plants whose tissues are deficient for manganese (Mn). Take-all of wheat will be decreased by all techniques which lift Mn concentrations in shoots and roots of Mn-deficient hosts to adequate levels. Wheat seedlings were grown in a Mn-deficient calcareous sand in small pots and inoculated with four field isolates of Ggt. Infection by three virulent isolates was increased under conditions which were Mn deficient for the wheat host but infection by a weakly virulent isolate, already low, was further decreased. Only the three virulent isolates caused visible oxidation of Mn in vitro. The sensitivity of Ggt isolates to manganous ions in vitro did not explain the extent of infection they caused on wheat hosts. In a similar experiment four Australian wheat genotypes were grown in the same Mn-deficient calcareous sand and inoculated with one virulent isolate of Ggt. Two genotypes were inefficient at taking up manganese and were very susceptible to take-all, one was very efficient at taking up manganese and was resistant to take-all, and the fourth genotype was intermediate for both characters. All genotypes were equally resistant under Mn-adequate conditions.  相似文献   
5.
6.
Detailed studies on the production of individual leaves, and the development of powdery mildew on them, were made in field plots of winter barley sown on different dates. The greater severity of the disease on early-sown than on later-sown seedlings during the autumn and winter can probably be explained mainly by changes in the abundance of inoculum and the suitability of the weather for infection. Results from glasshouse experiments suggest that the differences may be reinforced by direct effects of vernalisation on the susceptibility of seedlings to the disease. Contrary effects of sowing date on mildew severity during summer are probably due to the progressively greater resistance to mildew of the later-formed than of seedling leaves, and the earlier appearance of corresponding leaves on early-sown than on later-sown plants. Early sowing can also increase the total number of leaves produced per stem. Therefore, because resistance of the leaves increases progressively, the maximum degree of resistance expressed by the later-formed (e.g. flag) leaves will often be greater on early-sown than on later-sown plants.  相似文献   
7.
Take-all of wheat, caused by Gaeumannomyces graminis var tritici (Ggt), is reduced by ammoniacal fertilizers as compared to nitrate sources. This influence of nitrogen on the disease is only observed on nodal roots at flowering. But soil conduciveness to take-all, as measured in a soil bioassay, is modified earlier. Forty days after nitrogen application at early tillering, the NH4-treated soil became less conducive than the NO3-treated one. When nitrogen applications are done at sowing and at tillering, differences in disease propagation between the two soils are enhanced. Results from four years of experimentation show that when the level of natural soil inoculum is high, disease severity is reduced by ammonium, showing an effect on the parasitic phase of Ggt. At a low level of natural inoculum the effect of the source of nitrogen is mainly observed on the percent of infected plants, indicating that the saprophytic and preparasitic phases are affected. Rhizospheric bacterial populations increase from sowing to tillering, but differences on take-all conduciveness after tillering are not correlated with differences in the amounts of aerobic bacteria or fluorescent pseudomonads isolated from soils treated with different sources of nitrogen. Qualitative changes in fluorescent Pseudomonas spp. populations, like in vitro antagonism, are more likely to explain differences in soil conduciveness to take-all than are quantitative changes in this group. Nevertheless, the introduction of Ggt in a cropped soil leads to a greater increase in fluorescent pseudomonads populations than in total aerobic bacteria.The delay between reducing soil conduciveness and reducing disease in the field with ammonium nitrogen fertilization, the qualitative change of fluorescent pseudomonads populations and the role of necroses in rhizobacteria multiplication, provide information leading to our representation of a dynamic model based on the differentiation of the wheat root system into seminal and nodal roots.  相似文献   
8.
本文描述了寄生在大麦根部的禾谷多粘菌Polymyxa graminis Led.的次生游动孢子的超微结构,包括核、内质网、高尔基体、线粒体、脂质粒、排泄泡、小囊、具膜小囊、核糖体以及鞭毛基体(Kinetosome)和鞭毛杆等细胞器。游动孢子中未见微体。同时也在电镜下观察了游动孢子接触和穿透根细胞时所形成的管腔(Rohr)和棘杆(Stachel)以及游动孢子穿透细胞壁的详细过程。  相似文献   
9.
分别对接种与否的大麦抗—感白粉病等基因系—叶期幼苗取材进行蛋白质双向电泳分析。结果表明,病原的侵入使抗—感两系在30Kd以下的低分子量区域的蛋白质发生了明显变化。接种48小时之后,抗病系在pH5.5、6.0、6.8及8.8附近出现了对照中所没有的蛋白质,而在pH6.0和8.8附近的蛋白质则较对照有减小的趋势;感病系在pH6.0附近蛋白质明显增多,在pH8.8处不仅在量上有大幅度提高,而且种类也有增加。结果还表明,抗—感系间在未接种的情况下双向电泳图谱也有差异,接种之后由于感病系在pH8.8处蛋白质的特异性合成,使抗—感两系间的差异缩小。  相似文献   
10.
Take-all on turfgrass caused by Gaeumannomyces graminis var. avenae (Gga) occurs as patches of yellowish plants. On some patches the central zone was recolonized by the same grass species, Festuca sp., previously damaged by the fungus despite the centrifugal extension of the disease. This disease remission was assimilated to decline. Rhizosphere bacterial counts showed that total population of bacteria was nearly the same in all zones across the patches. However, the ratio of fluorescent Pseudomonas spp./ total bacteria was 1/22, 1/15.4, 1/3.5 and 1/2.9 in the disease free area, the front margin of the patch, in the damaged part of the patch, and in the recolonized central part respectively. Furthermore, in this last mentioned zone, 44 to 82% of the fluorescent Pseudomonas spp. were antagonistic in vitro to Gga, whereas only 12 to 34% from the disease free area were antagonistic. So the development of take-all on turf induced quantitative and qualitative changes in populations of fluorescent pseudomonads. The remission of the disease in the center was correlated to higher amount of antagonistic fluorescent pseudomonads in this part of the patches. This typical patch with the well defined zones can provide a good model for the study of changes in bacterial populations related to the build up of take-all decline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号