首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   978篇
  免费   9篇
  国内免费   52篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   13篇
  2018年   24篇
  2017年   5篇
  2016年   5篇
  2015年   8篇
  2014年   60篇
  2013年   59篇
  2012年   48篇
  2011年   119篇
  2010年   99篇
  2009年   88篇
  2008年   134篇
  2007年   112篇
  2006年   78篇
  2005年   79篇
  2004年   18篇
  2003年   20篇
  2002年   17篇
  2001年   6篇
  2000年   5篇
  1999年   10篇
  1998年   2篇
  1997年   7篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1039条查询结果,搜索用时 31 毫秒
1.
Although several p53–Mdm2-binding disruptors have been identified to date, few studies have been published on p53–Mdmx-interaction inhibitors. In the present study, we demonstrated that o-aminothiophenol derivatives with molecular weights of 200–300 selectively inhibited the p53–Mdmx interaction. S-2-Isobutyramidophenyl 2-methylpropanethioate (K-178) (1c) activated p53, up-regulated the expression of its downstream genes such as p21 and Mdm2, and preferentially inhibited the growth of cancer cells with wild-type p53 over those with mutant p53. Furthermore, we found that the S-isobutyryl-deprotected forms 1b and 3b of 1c and S-2-benzamidophenyl 2-methylpropanethioate (K-181) (3c) preferentially inhibited the p53–Mdmx interaction over the p53–Mdm2 interaction, respectively, by using a Flag-p53 and glutathione S-transferase (GST)-fused protein complex (Mdm2, Mdmx, DAPK1, or PPID). In addition, the interaction of p53 with Mdmx was lost by replacing a sulfur atom with an oxygen atom in 1b and 1c. These results suggest that sulfides such as 1b, 3b, 4b, and 5b interfere with the binding of p53–Mdmx, resulting in the dissociation of the two proteins. Furthermore, the results of oral administration experiments using xenografts in nude mice indicated that 1c reduced the volume of tumor masses to 49.0% and 36.6% that of the control at 100 mg/kg and 150 mg/kg, respectively, in 40 days.  相似文献   
2.
Purification and characterization of microsomal glutathione S-transferase produced by Aspergillus ochraceus TS are reported. The isozymes are located in microsomes and were active against 1-chloro-2,4-dinitrobenzene, ethacrynic acid, 1,2-dichloro-4-nitrobenzene, trans-4- phenyl-3-buten-2-one,p-nitrobenzyl chloride and bromosulphophthalein. They were inhibited by N-ethylmaleimide and bromosulphophthalein. The GST isozymes produced by Aspergillus ochraceus TS are indistinguishable in respect of their molecular mass both in native and denatured state. The subunit of the purified protein had an apparent Mr of 11 kDa while molecular mass of the native protein is around 56 kDa. The substrate specificity and pl values of the isozymes were different. The GSTs produced by Aspergillus ochraceus TS fairly share functional properties with mammalian cytosolic isozymes.  相似文献   
3.
Different CD95 (Fas/APO-1) isoforms and phosphory lated CD95 species were identified in human T and B cell lines. We had shown previously that the CD95 intracellular domain (IC), expressed as a glutathione S-transferase (GST) fusion protein in murine L929 fibroblasts, was phosphorylatedin vivo. GST-CD95IC was phosphorylatedin vitro by a kinase present in extracts from the human lymphocytic cell lines Jurkat and MP-1 and from murine L929 cells. Phosphoamino acid analysis indicated that phosphorylation occurred at multiple threonine residues and also at tyrosine (Tyr232 and Tyr291) and serine. Amino acids 191 to 275 of CD95 were sufficient for phosphorylation at threonine, tyrosine and serine and also mediated interaction with a 35 kDa cellular protein. Immuno-precipitation of CD95 and chemical cross-linking revealed CD95-associated proteins of approximately 35, 45 and 75 kDa. GST-CD95IC affinity chromatography detected binding of the 35 and 75 kDa protein species. The 75 kDa species may correspond to the CD95-associated proteins RIP or FAF1 and the 35 kDa protein may represent a TRADD analogue. These data indicate that several cellular proteins interact with CD95, possibly in a multi-protein complex, and that a kinase activity is associated with CD95 not onlyin vitro but alsoin vivo. Therefore, receptor phosphorylation may play a role in CD95 signal transduction. This work was in part supported by a grant from the Health Research Council of New Zealand (to JW).  相似文献   
4.
谷胱甘肽硫转移酶基因表达的调控   总被引:4,自引:0,他引:4  
催化内源性或外源性亲电子化合物与谷胱甘肽(GSH)结合的谷胱甘肽硫转移酶(GST)超基因家族是一族解毒功能蛋白.其基因的表达通过不同的机制受多种物质的调控.根据最近文献资料,对调控谷胱甘肽硫转移酶基因表达的基因结构、调控机制及氧化应激对谷胱甘肽硫转移酶基因表达的调控作用等作一简要综述.  相似文献   
5.
Immunological properties of ligandin(Lig) and glutathione S-transferase(GST)-A, -AA and -B were investigated for elucidating their subunit relationships. By using either anti-Lig or -AA antibody, GST-B made a clear common precipitin line with Lig or AA in double immunodiffusion and the activity was inhibited intermediately between Lig and AA, whereas Lig and AA reacted very weakly with antibodies to each other. A hybrid between Lig and AA formed by guanidine hydrochloride treatment was identified immunochemically to be GST-B. GST-A had no immunological relationship with any of other three forms.  相似文献   
6.
Abstract

Isoproturon at the recommended field dose (RFD) significantly reduced fresh and dry weights of shoots and roots as well as chlorophyll and carotenoid contents of 10-day-old maize seedlings during the following 20 days. The higher the herbicide dose, the greater the reduction. Meanwhile, ascorbate (AsA) and reduced glutathione (GSH) increased in leaves for only the first few days. Similar increases in activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) were detected. Low doses caused general increases while high doses induced diminutions; however, CAT and APX activities were inhibited by all doses. Nevertheless, H2O2 was significantly accumulated throughout the experiment; the magnitude of accumulation increased with time and herbicide dose. On the contrary, there were significant inhibitions in activities of the glutathione S-transferase (GST) isoforms (GST(CDNB), GST(ALA), or GST(MET)) with no variation in GST(ATR); the inhibition was greater with increasing isoproturon doses. These findings suggest the occurrence of an oxidative stress induced by isoproturon, a state that prolonged with increasing herbicide dose and/or treatment time. Moreover, V max of GST was lowered by isoproturon, whereas K m was unchanged, indicating that the herbicide is a competitive inhibitor of GST.  相似文献   
7.
In this study, glutathione S-transferase (GST) enzyme was purified from nontumour and tumour human gastric tissue and in vitro effects of heavy metals on the enzyme were examined. GST was purified 3089 fold with a specific activity of 20 U/mg and a yield of 78% from gastric tumour tissue; and 1185 fold with a specific activity of 5.69 U/mg and a yield of 50% from nontumour tissue by using glutathione?agarose affinity column, respectively. Enzyme purity was verified by SDS-PAGE and subunit molecular mass was calculated around 26 kDa. The molecular weight of the enzyme was calculated as 52 kDa by using Sephadex G-75 gel filtration column. Then, inhibitory effects of metal ions on the enzymes were investigated. Mg2+ and Cd2+ had inhibitory effect on the enzymes activities. Other kinetic properties of the enzymes were also determined.  相似文献   
8.
Previously we reported that in sheep dippers exposed to organophosphates the frequency of paraoxonase (PON1) polymorphisms differed between those with or without self-reported ill health. We have now examined whether polymorphisms in other genes involved in xenobiotic metabolism alter disease risk in this population. There were elevated but non-significant risks associated with the CYP2D6 WT genotype (odds ratio (OR) 1.47, 95% CI 0.83–2.60), or a GSTP1*B or *C allele (OR 1.37, 95% CI 0.88–2.01) or being GSTM1*2/GSTT1*2 homozygous (OR 1.61, 95% CI 0.74–3.48). Similar results were generally obtained after the exclusion of subjects to obtain a more homogenous case-referent population: for double null GSTM1 and GSTT1 homozygotes the OR was 2.06 (95% CI 0.85–2.04). In those also likely to have been exposed to diazinon, risks associated with a GSTP1*B or *C allele (OR 1.82, 95% CI 0.92–3.63) or a GSTM1*2/GSTT1*2 homozygous (OR 2.60, 95% CI 0.72–10.42) were elevated but not to a significant extent. Risk associated with PON1 genotype and phenotype varied with CYP2D6 and GSTP1 genotype but not consistently with a priori hypotheses. Further work is necessary to delineate more clearly pathways of organophosphate activation and non-PON1 pathways of detoxification and to confirm whether CYP and GST polymorphisms alter disease risk in populations exposed to organophosphates.  相似文献   
9.
Purpose: Crosstalk between Aurora-A kinase and p53 has been proposed. While the genetic amplification of Aurora-A has been observed in many human cancers, how p53 is regulated by Aurora-A remains ambiguous. In this study, Aurora-A-mediated phosphorylation of p53 was analyzed by mass spectrometry in order to identify a new phosphorylation site. Subsequently, the functional consequences of such phosphorylation were examined. Experimental design: In vitro phosphorylation of p53 by Aurora-A was performed and the phosphorylated protein was then digested with trypsin and enriched for phosphopeptides by immobilized metal affinity chromatography. Subsequently, a combination of β-elimination and Michael addition was applied to the phosphopeptides in order to facilitate the identification of phosphorylation sites by MS. The functional consequences of the novel phosphorylation of p53 on the protein–protein interactions, protein stability and transactivation activity were then examined using co-immunoprecipitation, Western blotting and reporter assays. Results: Ser-106 of p53 was identified as a novel site phosphorylated by Aurora-A. A serine-to-alanine mutation at this site was found to attenuate Aurora-A-mediated phosphorylation in vitro. In addition, phosphate-sensitive Phos-tag SDS-PAGE was used to confirm that the Ser-106 of p53 is in vivo phosphorylated by Aurora-A. Finally, co-immunoprecipitation studies suggested that Ser-106 phosphorylation of p53 decreases its interaction with MDM2 and prolongs the half-life of p53. Conclusions: The inhibition of the interaction between p53 and MDM2 by a novel Aurora-A-mediated p53 phosphorylation was identified in this study and this provides important information for further investigations into the interaction between p53 and Aurora-A in terms of cancer biology.  相似文献   
10.
Based on bioinformatics interrogation of the genome, > 500 mammalian protein kinases can be clustered within seven different groups. Of these kinases, the mitogen-activated protein kinase (MAPK) family forms part of the CMGC group of serine/threonine kinases that includes extracellular signal regulated kinases (ERKs), cJun N-terminal kinases (JNKs), and p38 MAPKs. With the JNKs considered attractive targets in the treatment of pathologies including diabetes and stroke, efforts have been directed to the discovery of new JNK inhibitory molecules that can be further developed as new therapeutics. Capitalizing on our biochemical understanding of JNK, we performed in silico screens of commercially available chemical databases to identify JNK1-interacting compounds and tested their in vitro JNK inhibitory activity. With in vitro and cell culture studies, we showed that the compound, 4′-methyl-N2-3-pyridinyl-4,5′-bi-1,3-thiazole-2,2′-diamine (JNK Docking (JD) compound 123, but not the related compound (4′-methyl-N ~ 2 ~ -(6-methyl-2-pyridinyl)-4,5′-bi-1,3-thiazole-2,2′-diamine (JD124), inhibited JNK1 activity towards a range of substrates. Molecular docking, saturation transfer difference NMR experiments and enzyme kinetic analyses revealed both ATP- and substrate-competitive inhibition of JNK by JD123. In characterizing JD123 further, we noted its ATP-competitive inhibition of the related p38-γ MAPK, but not ERK1, ERK2, or p38-α, p38-β or p38-δ. Further screening of a broad panel of kinases using 10 μM JD123, identified inhibition of kinases including protein kinase Bβ (PKBβ/Aktβ). Appropriately modified thiazole diamines, as typified by JD123, thus provide a new chemical scaffold for development of inhibitors for the JNK and p38-γ MAPKs as well as other kinases that are also potential therapeutic targets such as PKBβ/Aktβ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号