首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2013年   3篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
The tentative elucidation of the 3D-structure of vitellogenesis inhibiting hormone (VIH) peptides is conversely underprivileged by difficulties in gaining enough peptide or protein, diffracting crystals, and numerous extra technical aspects. As a result, no structural information is available for VIH peptide sequences registered in the Genbank. In this situation, it is not surprising that predictive methods have achieved great interest. Here, in this study the molt-inhibiting hormone (MIH) of the kuruma prawn (Marsupenaeus japonicus) is used, to predict the structure of four VIHrelated peptides in the crustacean species. The high similarity of the 3D-structures and the calculated physiochemical characteristics of these peptides suggest a common fold for the entire family.  相似文献   
2.
Summary

The ontogeny of the eyestalk neuroendocrine centers of the European lobster, Homarus gammarus, throughout embryonic development has been studied using light and electron microscopy, and the localization of specific neuroendocrine substances has been identified by immunocytochemistry. The procephalic lobes, which are the prospective eyestalks, develop progressively during embryonic development. In the nauplius stage two neuron masses are well defined. The visual structure originates from one of them and the neuroendocrine structure from the other. The four definitive optic ganglia are present at the mid-metanauplius stage and retain their appearance and location in larvae and adults. The organ of Bellonci, an internal sensory structure, appears at the mid-metanauplius stage and is mainly characterized by onion bodies. The medulla terminalis X-organ complex, an important neuroendocrine system, is present and already functional at the beginning of the embryonic metanauplius stage. Two neurohormones have been visualized immunocytochemically: the crustacean hyperglycemic hormone (CHH) and the gonad inhibiting hormone (GIH). Both neuropeptides are localized in the perikarya of neuroendocrine cells of the X-organ as well as in their tracts joining the presumptive sinus gland. However, the sinus gland has only been observed in the early larval stages just after hatching.  相似文献   
3.
Summary

This review deals with the studies which have been conducted for the past 30 years on the endocrine and neuroendocrine regulations in embryos and larvae of crustaceans, mostly in decapods. Y-organs, mandibular organs and the X-organ sinus gland complex of the eyestalks are present in the first post-embryonic instar of most investigated species. Y-organs, the X-organs and the sinus glands have also been located in embryos of a few species. Larval molting appears to be regulated in a way similar to that in adults involving a MIH-ecdysteroid system. Evidence points to a control of metamorphosis through the eyestalks. Experimental evidence points to a neuroendocrine control of changes in pigmentation and of osmoregulation. Progress in the isolation and characterization of the hormones and neurohormones controlling these metabolic changes in adults should help and promote further research on regulation during the embryonic and early postembryonic development.  相似文献   
4.
Glutathione S-Transferase enzymes (GSTs) constitute the principal Phase II superfamily which plays a key role in cellular detoxification and in other biological processes. Studies of GSTs have revealed that genetic polymorphisms are present in these enzymes and that some of these are Loss-of-Function (LoF) variants, which affect enzymatic functions and are related to different aspects of human health.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号