首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   3篇
  国内免费   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   9篇
  2018年   7篇
  2017年   6篇
  2016年   1篇
  2015年   1篇
  2014年   12篇
  2013年   9篇
  2012年   10篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   6篇
  2003年   1篇
  2002年   6篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Twenty-four male albino rats were given daily intraperitoneal injections of vasoactive intestinal polypeptide (VIP), motilin, human gastrin I (1–17) or the diluent control vehicle at a dose of 100 μg/kg for four consecutive days and food intake, water intake, body weight, and running wheel activity were determined every 24 hours. Animals injected with motilin or human gastrin I (1–17) exhibited decreased food intake relative to those injected with VIP or diluent, which did not differ from each other, although food intake increased reliably over days. The mean water consumption followed the same pattern as that of food intake. As expected from the above results, VIP produced weight gains as compared with rats injected with motilin or gastrin but not reliably more than after diluent. A reliable effect of trials for weight gain was the greatest on day three. Running wheel activity was not affected by injections of human gastrin I (1–17), motilin, or diluent but was reliably decreased by VIP. No significant differences existed across days. Although the results indicate that GI peptides may affect behavior when injected systemically and that like other peptides they have multiple effects, caution is urged in the interpretation of behavioral results at this time.  相似文献   
2.
The human gastrointestinal (GI) tract has been bestowed with the most difficult task of protecting the underlying biological compartments from the resident commensal flora and the potential pathogens in transit through the GI tract. It has a unique environment in which several defence tactics are at play while maintaining homeostasis and health. The GI tract shows myriad number of environmental extremes, which includes pH variations, anaerobic conditions, nutrient limitations, elevated osmolarity etc., which puts a check to colonization and growth of nonfriendly microbial strains. The GI tract acts as a highly selective barrier/platform for ingested food and is the primary playground for balance between the resident and uninvited organisms. This review focuses on antimicrobial defense mechanisms of different sections of human GI tract. In addition, the protective mechanisms used by microbes to combat the human GI defence systems are also discussed. The ability to survive this innate defence mechanism determines the capability of probiotic or pathogen strains to confer health benefits or induce clinical events respectively.  相似文献   
3.
TRPC4 and TRPC5 channels are important regulators of electrical excitability in both gastrointestinal myocytes and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαq protein coupled receptor or epidermal growth factor in particular. However, our understanding of the roles of Gαi/o proteins on TRPC4/5 channels is still rudimentary. We discuss potential roles for Gαi/o proteins in channel activation in addition to their known role in cellular signaling.  相似文献   
4.
The tiller of rice (Oryza sativa L.), which determines the panicle number per plant, is an important agronomic trait for grain production. Ascorbic acid (Asc) is a major plant antioxidant that serves many functions in plants. l-Galactono-1,4-lactone dehydrogenase (GLDH, EC 1.3.2.3) is an enzyme that catalyzes the last step of Asc biosynthesis in plants. Here we show that the GLDH-suppressed transgenic rices, GI-1 and GI-2, which have constitutively low (between 30% and 50%) leaf Asc content compared with the wild-type plants, exhibit a significantly reduced tiller number. Moreover, lower growth rate and plant height were observed in the Asc-deficient plants relative to the trait values of the wild-type plants at different tillering stages. Further examination showed that the deficiency of Asc resulted in a higher lipid peroxidation, a loss of chlorophyll, a loss of carotenoids, and a lower rate of CO2 assimilation. In addition, the level of abscisic acid was higher in GI-1 plants, while the level of jasmonic acid was higher in GI-1 and GI-2 plants at different tillering stages. The results we presented here indicated that Asc deficiency was likely responsible for the promotion of premature senescence, which was accompanied by a marked decrease in photosynthesis. These observations support the conclusion that the deficiency of Asc alters the tiller number in the GLDH-suppressed transgenics through promoting premature senescence and changing phytohormones related to senescence.  相似文献   
5.
TMEM16A (also known as anoctamin 1, ANO1) is the molecular basis of the calcium-activated chloride channels, with ten transmembrane segments. Recently, atomic structures of the transmembrane domains of mouse TMEM16A (mTMEM16A) were determined by single-particle electron cryomicroscopy. This gives us a solid ground to discuss the electrophysiological properties and functions of TMEM16A. TMEM16A is reported to be dually regulated by Ca2+ and voltage. In addition, the dysfunction of TMEM16A has been found to be involved in many diseases including cystic fibrosis, various cancers, hypertension, and gastrointestinal motility disorders. TMEM16A is overexpressed in many cancers, including gastrointestinal stromal tumors, gastric cancer, head and neck squamous cell carcinoma (HNSCC), colon cancer, pancreatic ductal adenocarcinoma, and esophageal cancer. Furthermore, overexpression of TMEM16A is related to the occurrence, proliferation, and migration of tumor cells. To date, several studies have shown that many natural compounds and synthetic compounds have regulatory effects on TMEM16A. These small molecule compounds might be novel drugs for the treatment of diseases caused by TMEM16A dysfunction in the future. In addition, recent studies have shown that TMEM16A plays different roles in different diseases through different signal transduction pathways. This review discusses the topology, electrophysiological properties, modulators and functions of TMEM16A in mediates nociception, gastrointestinal dysfunction, hypertension, and cancer and focuses on multiple regulatory mechanisms regarding TMEM16A.  相似文献   
6.
Circular RNAs (circRNAs) are a novel class of endogenous noncoding RNAs that form covalently closed continuous loops without 3′ end poly (A) tails and 5′ end caps. circRNAs are more conservative and stable than linear RNA. circRNAs can specifically bind to microRNAs as competing endogenous RNA, thereby directly or indirectly regulating the expression of related genes. circRNAs have been implicated in several cancers including gastrointestinal (GI) cancers. Some circRNAs have the potential to become biological biomarkers and therapeutic targets of GI cancers. However, the multiple functional roles of circRNAs in GI cancers remain largely unclear.  相似文献   
7.
Impaired angiogenesis leads to long-term complications and is a major contributor of the high morbidity in patients with Diabetes Mellitus (DM). Methylglyoxal (MGO) is a glycolysis byproduct that accumulates in DM and is detoxified by the Glyoxalase 1 (Glo1). Several studies suggest that MGO contributes to vascular complications through mechanisms that remain to be elucidated. In this study we have clarified for the first time the molecular mechanism involved in the impairment of angiogenesis induced by MGO accumulation.Angiogenesis was evaluated in mouse aortic endothelial cells isolated from Glo1-knockdown mice (Glo1KD MAECs) and their wild-type littermates (WT MAECs). Reduction in Glo1 expression led to an accumulation of MGO and MGO-modified proteins and impaired angiogenesis of Glo1KD MAECs. Both mRNA and protein levels of the anti-angiogenic HoxA5 gene were increased in Glo1KD MAECs and its silencing improved both their migration and invasion. Nuclear NF-?B-p65 was increased 2.5-fold in the Glo1KD as compared to WT MAECs. Interestingly, NF-?B-p65 binding to HoxA5 promoter was also 2-fold higher in Glo1KD MAECs and positively regulated HoxA5 expression in MAECs. Consistent with these data, both the exposure to a chemical inhibitor of Glo1 “SpBrBzGSHCp2” (GI) and to exogenous MGO led to the impairment of migration and the increase of HoxA5 mRNA and NF-?B-p65 protein levels in microvascular mouse coronary endothelial cells (MCECs).This study demonstrates, for the first time, that MGO accumulation increases the antiangiogenic factor HoxA5 via NF-?B-p65, thereby impairing the angiogenic ability of endothelial cells.  相似文献   
8.
Oral bioavailability of natural and synthetic carotenoids is generally poor in rodents, and this has limited the ability to test these antioxidant compounds in well-defined rodent models of human disease. Various strategies have been employed, with variable success, to increase the percentage of the total oral dose absorbed by the rodent GI tract. In the current study, a novel carotenoid derivative (the disodium disuccinate diester of astaxanthin; Heptax) was administered by oral gavage in a lipophilic emulsion to C57BL/6 mice. Plasma appearance and tissue accumulation of non-esterified, free astaxanthin was studied by HPLC over 72 h after single- and multiple-dose regimens. One-time dosing of Heptax in emulsion at 500 mg/kg resulted in significant appearance of free astaxanthin in plasma (Cmax=0.2 mg/l; 381 nM) and accumulation in solid organs (e.g. liver Cmax=0.9 mg/l; 1735 nM), levels not previously reported after single carotenoid doses in rodents. At each point in the concentration/time curve (AUC), free astaxanthin levels in liver were greater than the corresponding concentration in plasma, suggesting concentrative uptake by the liver. As the ED50 as an antioxidant for non-esterified, free astaxanthin in model systems is approximately 200 nM, the current results suggest that hepatoprotection against oxidative insults may be achieved after a single dose of Heptax in these animals. In humans, where the bioavailability of oral carotenoids ranges from 40 to 60% of the total dose when given in lipophilic vehicle, much smaller oral doses may be utilized for therapeutic benefit in a particular clinical application.  相似文献   
9.
GCN2 is the alpha-subunit of the only translation initiation factor (eIF2alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. In this study, we determined the solution structure of the mouse GCN2 RWD domain using NMR spectroscopy. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices, with an alphabetabetabetabetaalphaalpha topology. A characteristic YPXXXP motif, which always occurs in RWD domains, forms a stable loop including three consecutive beta-turns that overlap with each other by two residues (triple beta-turn). As putative binding sites with GCN1, a structure-based alignment allowed the identification of several surface residues in alpha-helix 3 that are characteristic of the GCN2 RWD domains. Despite the apparent absence of sequence similarity, the RWD structure significantly resembles that of ubiquitin-conjugating enzymes (E2s), with most of the structural differences in the region connecting beta-strand 4 and alpha-helix 3. The structural architecture, including the triple beta-turn, is fundamentally common among various RWD domains and E2s, but most of the surface residues on the structure vary. Thus, it appears that the RWD domain is a novel structural domain for protein-binding that plays specific roles in individual RWD-containing proteins.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号