首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
  2019年   1篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有34条查询结果,搜索用时 296 毫秒
1.
At 0°C, when Na+ was the only cation present in the incubation medium, increasing the Na+ concentration from 3 to 10 mM enhanced the affinity of [3H]l-[2-(di-phenylmethoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) for the specific binding site present in rat striatal membranes without affecting the 5max. For higher Na+ concentrations, specific binding values plateaued and then slightly decreased at 130 mM Na+. In a 10 mM Na+ medium, the KD and the Bmax were, respectively, 0.23 nM and 12.9 pmol/mg of protein. In the presence of 0.4 nM [3H]GBR 12783, the half-maximal specific binding occurred at 5 mM Na+. A similar Na+ dependence was observed at 20°C. Scatchard plots indicated that K+, Ca2+, Mg2+, and Tris+ acted like competitive inhibitors of the specific binding of [3H]GBR 12783. The inhibitory potency of various cations (K+, Ca2+, Mg2+, Tris+, Li+ and choline) was enhanced when the Na+ concentration was decreased from 130 to 10 mM. In a 10 mM Na+ medium, the rank order of inhibitory potency was Ca2+ (0.13 mM) > Mg2+ > Tris+ > K+ (15 mM). The requirement for Na+ was rather specific, because none of the other cations acted as a substitute for Na+. No anionic requirement was found: Cl-, Br-, and F- were equipotent. These results suggest that low Na+ concentrations are required for maximal binding; higher Na+ concentrations protect the specific binding site against the inhibitory effect of other cations.  相似文献   
2.
Zhao C  Slevin JT  Whiteheart SW 《FEBS letters》2007,581(11):2140-2149
N-ethylmaleimide sensitive factor (NSF) is an ATPases associated with various cellular activities protein (AAA), broadly required for intracellular membrane fusion. NSF functions as a SNAP receptor (SNARE) chaperone which binds, through soluble NSF attachment proteins (SNAPs), to SNARE complexes and utilizes the energy of ATP hydrolysis to disassemble them thus facilitating SNARE recycling. While this is a major function of NSF, it does seem to interact with other proteins, such as the AMPA receptor subunit, GluR2, and beta2-AR and is thought to affect their trafficking patterns. New data suggest that NSF may be regulated by transient post-translational modifications such as phosphorylation and nitrosylation. These new aspects of NSF function as well as its role in SNARE complex dynamics will be discussed.  相似文献   
3.
The different psychomotor-stimulant effects of cocaine, GBR12909, and benztropine may partially stem from their different molecular actions on the dopamine transporter (DAT). To explore this possibility, we examined binding of these inhibitors to mutated DATs with altered Na(+) dependence of DAT activities and with enhanced binding of a cocaine analog, [(3)H]2 beta-carbomethoxy-3 beta-(4-fluorophenyl)tropane (CFT). In [(3)H]CFT competition assays with intact cells, the mutation-induced change in the ability of Na(+) to enhance the apparent affinity of CFT, cocaine, GBR12909, and benztropine was inhibitor-independent. Thus, for the four inhibitors, the curve of [Na(+)] versus apparent ligand affinity was steeper at W84L compared with wild type, shallower at D313N, and flat at W84LD313N. At each mutant, the apparent affinity of CFT and cocaine was enhanced regardless of whether Na(+) was present. However, the apparent affinity of GBR12909 and benztropine for W84L was reduced in the absence of Na(+) but near normal in the presence of 130 mm Na(+), and that for D313N and W84LD313N was barely changed. At the single mutants, the alterations in Na(+) dependence and apparent affinity of the four inhibitors were comparable between [(3)H]CFT competition assays and [(3)H]dopamine uptake inhibition assays. These results demonstrate that DAT inhibitors producing different behavioral profiles can respond in an opposite way when residues of the DAT protein are mutated. For GBR12909 and benztropine, their cocaine-like changes in Na(+) dependence suggest that they prefer a DAT state similar to that for cocaine. However, their cocaine-unlike changes in apparent affinity argue that they, likely via their diphenylmethoxy moiety, share DAT binding epitopes that are different from those for cocaine.  相似文献   
4.
The widely abused psychostimulant cocaine is thought to elicit its reinforcing effects primarily via inhibition of the neuronal dopamine transporter (DAT). However, not all DAT inhibitors share cocaine's behavioral profile, despite similar or greater affinity for the DAT. This may be due to differential molecular interactions with the DAT. Our previous work using transporter mutants with altered conformational equilibrium (W84L and D313N) indicated that benztropine and GBR12909 interact with the DAT in a different manner than cocaine. Here, we expand upon these previous findings, studying a number of structurally different DAT inhibitors for their ability to inhibit [(3)H]CFT binding to wild-type, W84L and D313N transporters. We systematically tested structural intermediates between cocaine and benztropine, structural hybrids of benztropine and GBR12909 and a number of other structurally heterologous inhibitors. Derivatives of the stimulant desoxypipradrol (2-benzhydrylpiperidine) exhibited a cocaine-like binding profile with respect to mutation, whereas compounds possessing the diphenylmethoxy moiety of benztropine and GBR12909 were dissimilar to cocaine-like compounds. In tests with specific isomers of cocaine and tropane analogues, compounds with 3alpha stereochemistry tended to exhibit benztropine-like binding, whereas those with 3beta stereochemistry were more cocaine-like. Our results point to the importance of specific molecular features--most notably the presence of a diphenylmethoxy moiety--in determining a compound's binding profile. This study furthers the concept of using DAT mutants to differentiate cocaine-like inhibitors from atypical inhibitors in vitro. Further studies of the molecular features that define inhibitor-transporter interaction could lead to the development of DAT inhibitors with differential clinical utility.  相似文献   
5.
The bioerosive potential of the intertidal chiton Acanthopleura gemmata on One Tree Reef was determined by quantification of CaCO3 in daily faecal pellet production of individuals transplanted into mesocosms after nocturnal-feeding forays. Mean bioerosive potential was estimated at 0.16 kg CaCO3 chiton−1 yr−1. Bioerosion rates were estimated for populations on two distinct chiton habitats, reef margin (0.013 kg CaCO3 m−2 yr−1) and beachrock platform (0.25 kg CaCO3 m−2 yr−1). Chiton density on the platform was orders of magnitude greater than on the reef margin. The surface-lowering rate (0.16 mm m−2 yr) due to bioerosion by the beachrock population is a substantial contribution to the total surface-lowering rate of 2 mm m−2 yr−1 previously reported for One Tree Reef across all erosive agents. At high densities, the contribution of A. gemmata to coral reef bioerosion budgets may be comparable to other important bioeroders such as echinoids and fish.  相似文献   
6.
Abstract: In vivo electrochemistry was used to characterize dopamine clearance in the medial prefrontal cortex and to compare it with clearance in the dorsal striatum and nucleus accumbens. When calibrated amounts of dopamine were pressure-ejected into the cortex from micropipettes adjacent to the recording electrodes, transient and reproducible dopamine signals were detected. The local application of the selective uptake inhibitors GBR-12909, desipramine, and fluoxetine before the application of dopamine indicated that at the lower recording depths examined (2.5–5.0 mm below the brain surface), locally applied dopamine was cleared from the extracellular space primarily by the dopamine transporter. The norepinephrine transporter played a greater role at the more superficial recording sites (0.5–2.25 mm below the brain surface). To compare clearance of dopamine in the medial prefrontal cortex (deeper sites only), striatum, and nucleus accumbens, varying amounts of dopamine were locally applied in all three regions of individual animals. The signals recorded from the cortex were of greater amplitude and longer time course than those recorded from the striatum or accumbens (per picomole of dopamine applied), indicating less efficient dopamine uptake in the medial prefrontal cortex. The fewer number of transporters in the medial prefrontal cortex may be responsible, in part, for this difference, although other factors may also be involved. These results are consistent with the hypothesis that regulation of dopaminergic function is unique in the medial prefrontal cortex.  相似文献   
7.
Abstract: Binding of the selective dopamine (DA) uptake inhibitor [3H]GBR 12935 to rat striatal membranes was characterized biochemically and pharmacologically. [3H]-GBR 12935 binding at 0°C was reversible and saturable and Scatchard analysis indicated a single binding site with a KD of 5.5 nM and a Bmax of 760 pmol/mg tissue. [3H]GBR 12935 labeled two binding sites. One binding site was identified as the classic DA uptake site, since methylphenidate, cocaine, diclofensine, and Lu 19–005 potently inhibited [3H]GBR 12935 binding to it. Binding to the second site was inhibited by high concentrations of the above compounds. IC50 values for inhibition of [3H]GBR 12935 binding to the DA uptake site were proportional to IC50 values for inhibition of DA uptake. However, substrates of DA uptake, e.g., DA and 1-methyl-4-phenylpyridine, and DA releasers, e.g., the amphetamines, inhibited [3H]GBR 12935 binding less than DA uptake. Rate experiments excluded the possibility that these “weak” inhibitors affected the binding by alloste-ric coupled binding sites. The second binding site was not a noradrenergic, serotonergic, or GABAergic uptake site. Neither was it a dopaminergic, acetylcholinergic, histaminic, serotonergic, or adrenergic receptor. However, [3H]GBR 12935 was potently displaced from it by disubstituted piper-azine derivatives, i.e., flupentixol and piflutixol. DA uptake and the DA uptake binding site of [3H]GBR 12935 were located primarily in the striatum, but the piperazine acceptor site was distributed uniformly throughout the brain. Also only the DA uptake binding site was destroyed by 6-OH-DA. Thus, [3H]GBR 12935 labels the classic DA uptake site in rat striatum and also a piperazine acceptor site. Substrates for DA uptake and releasers of DA inhibited [3H]GBR 12935 binding with low potency, but did not alter the rate constants for [3H]GBR 12935 binding. Therefore inhibitors of DA uptake label the carrier site and prevent the carrier process.  相似文献   
8.
9.
Binding characteristics of the selective dopamine uptake inhibitor [3H]GBR 12935 have been described for the striatum but not for the frontal cortex. We have developed assay conditions for quantifying [3H]GBR 12935 binding in the frontal cortex. In both the rat and human frontal cortex, the assay required four times more tissue (8 mg/ml) than in the striatum (2 mg/ml). [3H]GBR 12935 binding in the frontal is complex, as it involves multiple binding sites. The high-affinity binding site is sodium dependent and is inhibited by sodium. In human but not in rat frontal cortex, addition of K+ reversed the sodium inhibition. The pharmacological profile of the high-affinity [3H]GBR 12935 binding site is consistent with that of the dopamine transporter, because drugs with the most selective dopamine reuptake blocking activities are the most potent displacers of [3H]GBR 12935 binding. There is a positive correlation between the rat and human inhibitory constants, a finding indicating that there are similar pharmacological profiles across at least these two species. Rats with a 6-hydroxydopamine lesion had a 47% decrease in number of [3H]GBR 12935 binding sites, a result indicating that at least a portion of these sites had been on presynaptic dopamine terminals.  相似文献   
10.
We have studied the effects of several cations on (1) the neuronal uptake of [3H]dopamine ([3H]DA) and (2) the specific binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenyl-2-[1-3H]propenyl)piperazi ne ([3H]GBR 12783) to a site associated with the neuronal carrier of DA, in preparations obtained from rat striatum. When studied under the same experimental conditions, both the uptake of [3H]DA and the binding of [3H]GBR 12783 were similarly impaired by the gradual replacement of NaCl by sucrose. In both processes, no convenient substitute for Na+ was found. Furthermore, potential substitutes of Na+ acted as inhibitors of the uptake with a rank order of potency as follows: K+ = Li+ > or = Cs+ > or = Rb+ > choline+ > Tris+ > sucrose, which was somewhat different from that observed in binding studies, i.e., Cs+ > Rb+ > choline+ > or = K+ > Li+ > Tris+ > sucrose. In the presence of either 36 mM or 136 mM Na+, [3H]DA uptake was optimal with 2 mM Mg2+, 1 mM K+, or 1 mM Ca2+. In contrast, higher concentrations of divalent cations competitively blocked the uptake process. K+ concentrations > 50 mM impaired the specific binding, whereas in the millimolar range of concentrations, K+ noncompetitively inhibited the uptake. Decreasing the Na+ concentration increased the inhibitory effect of K+, Ca2+, and Mg2+ on the specific uptake. An increase in NaCl concentration from 0 to 120 mM elicited a significant decline in the affinity of some substrates for the [3H]GBR 12783 binding site. An uptake study performed using optimal experimental conditions defined in the present study revealed that decreasing Na+ concentration reduces the affinity of DA for the neuronal transport. We propose a hypothetical model for the neuronal transport of DA in which both Na+ and K+ membrane gradients are involved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号