首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   8篇
  2023年   1篇
  2019年   3篇
  2018年   7篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   5篇
  2012年   10篇
  2011年   4篇
  2010年   3篇
  2009年   7篇
  2008年   14篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   6篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1990年   1篇
  1975年   1篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
1.

Background

Clinical and experimental evidence demonstrates that sleep and epilepsy reciprocally affect each other. Previous studies indicated that epilepsy alters sleep homeostasis; in contrast, sleep disturbance deteriorates epilepsy. If a therapy possesses both epilepsy suppression and sleep improvement, it would be the priority choice for seizure control. Effects of acupuncture of Feng-Chi (GB20) acupoints on epilepsy suppression and insomnia treatment have been documented in the ancient Chinese literature, Lingshu Jing (Classic of the Miraculous Pivot). Therefore, this study was designed to investigate the effect of electroacupuncture (EA) stimulation of bilateral Feng-Chi acupoints on sleep disruptions in rats with focal epilepsy.

Results

Our result indicates that administration of pilocarpine into the left central nucleus of amygdala (CeA) induced focal epilepsy and decreased both rapid eye movement (REM) sleep and non-REM (NREM) sleep. High-frequency (100 Hz) EA stimulation of bilateral Feng-Chi acupoints, in which a 30-min EA stimulation was performed before the dark period of the light:dark cycle in three consecutive days, further deteriorated pilocarpine-induced sleep disruptions. The EA-induced exacerbation of sleep disruption was blocked by microinjection of naloxone, μ- (naloxonazine), κ- (nor-binaltorphimine) or δ-receptor antagonists (natrindole) into the CeA, suggesting the involvement of amygdaloid opioid receptors.

Conclusion

The present study suggests that high-frequency (100 Hz) EA stimulation of bilateral Feng-Chi acupoints exhibits no benefit in improving pilocarpine-induced sleep disruptions; in contrast, EA further deteriorated sleep disturbances. Opioid receptors in the CeA mediated EA-induced exacerbation of sleep disruptions in epileptic rats.  相似文献   
2.
GB virus C (GBV‐C), a human virus of the Flaviviridae family that is structurally and epidemiologically closest to hepatitis C virus (HCV), has been reported to confer beneficial outcomes in HIV‐positive patients. However, the prevalence of GBV‐C in HIV‐positive individuals in Indonesia is unknown. Since GBV‐C is more prevalent in anti‐HCV positive patients than in anti‐HCV negative subjects, transmission of GBV‐C and HCV could be by the same method. This study examined the prevalence and molecular characteristics of GBV‐C infection in HIV patients in Yogyakarta, Indonesia. The prevalence of GBV‐C among HIV patients (n = 125, median age 31 years) based on the 5′UTR region was 111/125 (88.8%), including 39/48 (81.3%) and 72/77 (93.5%) HIV‐infected patients with and without HCV infection, respectively. GBV‐C isolates were of genotype 2a, 3 and 6 in 58.3%, 12.6% and 28.4% of patients, respectively. Patients with genotype 3 were significantly younger than those with genotypes 2a or 6 (P = 0.001 and P = 0.012, respectively). Genotypes 3 and 6 were significantly associated with injection drug use (P = 0.004 and P = 0.002, respectively) and HCV co‐infection (P < 0.001 for both genotypes), indicating a shared transmission route with HCV. In conclusion, the prevalence of GBV‐C among HIV‐positive patients in Indonesia is high, and three genotypes were detected, namely genotype 2a, 3 and 6.  相似文献   
3.
We study computationally a family of β-hairpin peptides with systematically introduced chiral inversions, in explicit water, and we investigate the extent to which the backbone structure is able to fold in the presence of heterochiral perturbations. In contrast to the recently investigated case of a helical peptide, we do not find a monotonic change in secondary structure content as a function of the number of L- to D-inversions. The effects of L- to D-inversions are instead found to be highly position-specific. Additionally, in contrast to the helical peptide, some inversions increase the stability of the folded peptide: in such cases, we compute an increase in β-sheet content in the aqueous solution equilibrium ensemble. However, the tertiary structures of the stable (folded) configurations for peptides for which inversions cause an increase in β-sheet content show differences from one another, as well as from the native fold of the nonchirally perturbed β-hairpin. Our results suggest that although some chiral perturbations can increase folding stability, chirally perturbed proteins may still underperform functionally, given the relationship between structure and function.  相似文献   
4.
Guanine:adenine (G:A) mismatches and in particular tandem G:A (tG:A) mismatches are frequently observed in biological RNA molecules and can serve as sites for tertiary interaction, metal binding and protein recognition. Depending on the surrounding sequence tG:A mismatches can adopt different basepairing topologies. In the sequence context (5'-) GGAC (tandem G:A in bold) a face-to-face (imino or Watson-Crick-like) pairing is preferred whereas in the CGAG context, G and A adopt a sheared arrangement. Systematic conformational searches with a generalized Born continuum model and molecular dynamics simulations including explicit water molecules and ions have been used to generate face-to-face and sheared tG:A mismatches in both CGAG and GGAC sequence contexts. Conformations from both approaches were evaluated using the same force field and a Poisson-Boltzmann continuum solvent model. Although the substate analysis predicted the sheared arrangement to be energetically preferred in both sequence contexts, a significantly greater preference of the sheared form was found for the CGAG context. In agreement with the experimental observation, the analysis of molecular dynamics trajectories indicated a preference of the sheared form in the case of the CGAG-context and a favorization of the face-to-face form in the case of the GGAC context. The computational studies allowed to identify energetic contributions that stabilize or destabilize the face-to-face and sheared tandem mismatch topologies. The calculated nonpolar solvation and Lennard-Jones packing interaction were found to stabilize the sheared topology independent of the sequence context. Electrostatic contributions are predicted to make the most significant contribution to the sequence context dependence on the structural preference of tG:A mismatches.  相似文献   
5.

Background

Novel pentacycloundecane (PCU)-lactone-CO-EAIS peptide inhibitors were designed, synthesized, and evaluated against wild-type C-South African (C-SA) HIV-1 protease. Three compounds are reported herein, two of which displayed IC50 values of less than 1.00 μM. A comparative MM-PB(GB)SA binding free energy of solvation values of PCU-lactam and lactone models and their enantiomers as well as the PCU-lactam-NH-EAIS and lactone-CO-EAIS peptide inhibitors and their corresponding diastereomers complexed with South African HIV protease (C-SA) was performed. This will enable us to rationalize the considerable difference between inhibitory concentration (IC50) of PCU-lactam-NH-EAIS and PCU-lactone-CO-EAIS peptides.

Results

The PCU-lactam model exhibited more negative calculated binding free energies of solvation than the PCU-lactone model. The same trend was observed for the PCU-peptide inhibitors, which correspond to the experimental activities for the PCU-lactam-NH-EAIS peptide (IC50 = 0.076 μM) and the PCU-lactone-CO-EAIS peptide inhibitors (IC50 = 0.850 μM). Furthermore, a density functional theory (DFT) study on the natural atomic charges of the nitrogen and oxygen atoms of the three PCU-lactam, PCU-lactim and PCU-lactone models were performed using natural bond orbital (NBO) analysis. Electrostatic potential maps were also used to visualize the electron density around electron-rich regions. The asymmetry parameter (η) and quadrupole coupling constant (χ) values of the nitrogen and oxygen nuclei of the model compounds were calculated at the same level of theory. Electronic molecular properties including polarizability and electric dipole moments were also calculated and compared. The Gibbs theoretical free solvation energies of solvation (∆Gsolv) were also considered.

Conclusions

A general trend is observed that the lactam species appears to have a larger negative charge distribution around the heteroatoms, larger quadrupole constant, dipole moment and better solvation energy, in comparison to the PCU-lactone model. It can be argued that these characteristics will ensure better eletronic interaction between the lactam and the receptor, corresponding to the observed HIV protease activities in terms of experimental IC50 data.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-015-0115-5) contains supplementary material, which is available to authorized users.  相似文献   
6.
The present study involves the utilization of replica exchange molecular dynamics (REMD) methodology to explore the conformational space of Neuromedin C (NMC) using implicit (REMDimplicit) and explicit (REMDexplicit) water models. Comparison of the structures obtained from these simulations indicate that REMDexplicit trajectory display a greater tendency to induce β‐turns and bent structures as compared to those obtained from the REMDimplicit simulation. Moreover, two additional MD trajectories performed using Langevin (MDLang) and Berendsen (MDBerend) algorithms under generalized born (GB) solvent conditions were also suitably competent to sample similar kinds of conformations, although the extent of beta turns was low compared to those observed in REMDexplicit simulation. Finally, the comparison of results obtained from all the trajectories and those derived from the NMR studies of Ni(II) complex of NMC indicates that the REMD under explicit conditions is more efficient in sampling the conformations, and show good agreement with the experimental results. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
7.
A new method is proposed for calculating aqueous solvation free energy based on atom-weighted solvent accessible surface areas. The method, SAWSA v2.0, gives the aqueous solvation free energy by summing the contributions of component atoms and a correction factor. We applied two different sets of atom typing rules and fitting processes for small organic molecules and proteins, respectively. For small organic molecules, the model classified the atoms in organic molecules into 65 basic types and additionally. For small organic molecules we proposed a correction factor of hydrophobic carbon to account for the aggregation of hydrocarbons and compounds with long hydrophobic aliphatic chains. The contributions for each atom type and correction factor were derived by multivariate regression analysis of 379 neutral molecules and 39 ions with known experimental aqueous solvation free energies. Based on the new atom typing rules, the correlation coefficient (r) for fitting the whole neutral organic molecules is 0.984, and the absolute mean error is 0.40 kcal mol–1, which is much better than those of the model proposed by Wang et al. and the SAWSA model previously proposed by us. Furthermore, the SAWSA v2.0 model was compared with the simple atom-additive model based on the number of atom types (NA). The calculated results show that for small organic molecules, the predictions from the SAWSA v2.0 model are slightly better than those from the atom-additive model based on NA. However, for macromolecules such as proteins, due to the connection between their molecular conformation and their molecular surface area, the atom-additive model based on the number of atom types has little predictive power. In order to investigate the predictive power of our model, a systematic comparison was performed on seven solvation models including SAWSA v2.0, GB/SA_1, GB/SA_2, PB/SA_1, PB/SA_2, AM1/SM5.2R and SM5.0R. The results showed that for organic molecules the SAWSA v2.0 model is better than the other six solvation models. For proteins, the model classified the atoms into 20 basic types and the predicted aqueous free energies of solvation by PB/SA were used for fitting. The solvation model based on the new parameters was employed to predict the solvation free energies of 38 proteins. The predicted values from our model were in good agreement with those from the PB/SA model and were much better than those given by the other four models developed for proteins.Figure The definition of hydrophobic carbons. Here CA, CB and CD are three carbon atoms; X represents a heteroatom. According to our definition, CB is a hydrophobic carbon, CA is not a hydrophobic carbon because a heteroatom is within four atoms and CD is not a hydrophobic carbon because CD is sp2- hydridized and in a six-member ring.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
8.
It is often essential to focus the study on the small-size domains of large proteins in eukaryotic cells in the post-genomic era, but the low expression level, insolubility, and instability of the domains have been continuing to hinder the massive purification of domain peptides for structural and biological investigation. In this work, a highly efficient expression and purification system based on a small-size fusion partner GB1 and histidine tag was utilized to solve these problems. Two vectors, namely pGBTNH and pGBH, were constructed to improve expression and facilitate purification. The linker and thrombin cleavage site have been optimized for minimal degradation during purification process. This system has been tested for eight domain peptides varying in size, linker, hydrophobicity, and predicted secondary structure. The results indicate that this system is achievable to produce these domain peptides with high solubility and stability for further biochemical characterization. Moreover, the fusion protein without the linker and thrombin cleavage site is also suitable for spectroscopic studies especially for NMR structural elucidation, if the target peptide is prone to precipitation or easily degraded during purification. This system will be beneficial to the research field of structure and function of small domain and peptide fragment.  相似文献   
9.
GB virus C/hepatitis G (GBV-C) is an RNA virus of the family Flaviviridae. Despite replicating with an RNA-dependent RNA polymerase, some previous estimates of rates of evolutionary change in GBV-C suggest that it fixes mutations at the anomalously low rate of ∼10−7 nucleotide substitution per site, per year. However, these estimates were largely based on the assumption that GBV-C and its close relative GBV-A (New World monkey GB viruses) codiverged with their primate hosts over millions of years. Herein, we estimated the substitution rate of GBV-C using the largest set of dated GBV-C isolates compiled to date and a Bayesian coalescent approach that utilizes the year of sampling and so is independent of the assumption of codivergence. This revealed a rate of evolutionary change approximately four orders of magnitude higher than that estimated previously, in the range of 10−2 to 10−3 sub/site/year, and hence in line with those previously determined for RNA viruses in general and the Flaviviridae in particular. In addition, we tested the assumption of host-virus codivergence in GBV-A by performing a reconciliation analysis of host and virus phylogenies. Strikingly, we found no statistical evidence for host-virus codivergence in GBV-A, indicating that substitution rates in the GB viruses should not be estimated from host divergence times.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号