首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2440篇
  免费   225篇
  国内免费   92篇
  2757篇
  2024年   6篇
  2023年   33篇
  2022年   57篇
  2021年   62篇
  2020年   57篇
  2019年   50篇
  2018年   84篇
  2017年   106篇
  2016年   100篇
  2015年   120篇
  2014年   164篇
  2013年   137篇
  2012年   83篇
  2011年   129篇
  2010年   94篇
  2009年   160篇
  2008年   197篇
  2007年   148篇
  2006年   128篇
  2005年   96篇
  2004年   100篇
  2003年   95篇
  2002年   57篇
  2001年   44篇
  2000年   53篇
  1999年   46篇
  1998年   29篇
  1997年   23篇
  1996年   21篇
  1995年   34篇
  1994年   19篇
  1993年   29篇
  1992年   22篇
  1991年   10篇
  1990年   14篇
  1989年   14篇
  1988年   10篇
  1987年   19篇
  1986年   9篇
  1985年   22篇
  1984年   10篇
  1983年   5篇
  1982年   16篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1978年   5篇
  1976年   6篇
  1973年   4篇
  1972年   3篇
排序方式: 共有2757条查询结果,搜索用时 15 毫秒
1.
2.
Decreasing functional responses as a result of adaptive consumer behavior   总被引:1,自引:0,他引:1  
Summary Several different mechanisms that may produce decreasing functional responses are investigated using models that assume that an optimally foraging consumer is exploiting one or two resources. Decreasing functional responses are associated with situations in which there are costs to resource consumption. If the process of resource acquisition has costs, decreasing functional responses may occur when there is a single homogeneous resource. If the cost is solely a function of the amount of resource ingested, decreasing functional responses on a single resource do not occur. Both types of cost can produce decreasing functional responses when there are two resource types and a trade-off relationship between consumption of one and consumption of the other. Decreasing functional responses seem to be most likely to occur on a food that yields high benefits and costs per unit of foraging time or effort when there is an alternative resource which yields low benefits and costs. Given this type of foraging choice, the functional response is most likely to decrease when the benefits of ingestion increase at a decreasing rate, and the costs of ingestion increase at an increasing rate with amount ingested. An important and unique consequence of decreasing functional responses is the possibility of population cycles in differential equation models of consumer-resource systems with non-reproducing resources; this is illustrated with a simple comsumer-resource model.  相似文献   
3.
Summary We evaluated three methods for the analysis of functional response data by asking whether a given method could discriminate among functional responses and whether it could accurately identify regions of positive density-dependent predation. We evaluated comparative curve fitting with foraging models, linear least-squares analysis using the angular transformation, and logit analysis. Using data from nature and simulations, we found that the analyses of predation rates with the angular transformation and logit analysis were best at consistently determining the true functional response, i.e. the model used to generate simulated data. These methods also produced the most accurate estimates of the true regions of density dependence. Of these two methods, functional response data best fulfill the assumptions of logit analysis. Angularly transformed predation rates only approximate the assumptions of linear leastsquares analysis for predation rates between 0.1 and 0.9. Lack-of-fit statistics can reveal inadequate fit of a model to a data set where simple regression statistics might erroneously suggest a good match.  相似文献   
4.
A functional differential equation which is nonlinear and involves forward and backward deviating arguments is solved numerically. The equation models conduction in a myelinated nerve axon in which the myelin completely insulates the membrane, so that the potential change jumps from node to node. The equation is of first order with boundary values given at t=±. The problem is approximated via a difference scheme which solves the problem on a finite interval by utilizing an asymptotic representation at the endpoints, cubic interpolation and iterative techniques to approximate the delays, and a continuation method to start the procedure. The procedure is tested on a class of problems which are solvable analytically to access the scheme's accuracy and stability, then applied to the problem that models propagation in a myelinated axon. The solution's dependence on various model parameters of physical interest is studied. This is the first numerical study of myelinated nerve conduction in which the advance and delay terms are treated explicitly.Supported in part by NSF Grant MCS8301724 and by a Biomedical Research Support Grant 2SO7RR0706618 from NIH  相似文献   
5.
6.
The variation of body shape among prosimians is reviewed. Special emphasis is placed on the selective advantages, that is the mechanical reasons, to which variants of the locomotor apparatus can be traced back. There are differences found in the cheiridia, but at present they cannot be explained in terms of mechanics; there is nearly no knowledge about the mechanical meaning of their diversity. Myological characteristics of taxa can be explained mechanically, but this has not yet been done. Well known are variations of body proportions. These discriminate higher taxa, and are largely coincident with the often-used locomotor categories. In spite of this, there are only few sound arguments about the real biomechanic value of characteristic proportions for a given locomotor mode. What is known on this field, is reviewed. Progress can be made only, if the mechanical conditions, set by postural behavior and locomotion, are understood completely. The subtle distinctions between lower taxonomic units can normally be identified only on the basis of detailed and quantified analyses of movements on one hand, and of biometrics on the other. In the few cases in which such studies have been made, the differences of morphology fit to the mechanical requirements of locomotion which also differ only in quantitative details.  相似文献   
7.
The "squeeze" form of power grip is investigated for the purposes of clarifying the hand posture and activities associated with the grip, assessing the potential in chimpanzees for using the grip, and identifying morphological correlates of an effective power grip that may be recognized in fossil hominid species. Our approaches include: (1) the analysis of the human grip, focusing on both the hand posture involved and hand movements associated with use of the grip in hammering; (2) the analysis of similar chimpanzee grips and associated movements; (3) comparative functional analysis of regions in the hand exploited and stressed by the grip and its associated movements in humans; and (4) a review of the literature on the power grip and its morphological correlates. Results of the study indicate that humans use a squeeze form of power grip effectively to wield cylindrical tools forcefully as extensions of the forearm. Several morphological features occur in high frequency among humans which facilitate the grip and are consistent with the large internal and external forces associated with it in hammering and in other tool-using activities. Chimpanzee hand postures resembling this form of human power grip are not fully comparable and lack some of these morphological correlates that facilitate its use. The hand of Australopithecus afarensis does not appear to have been stressed by use of the grip, but there is some evidence for this type of stress in the metacarpals from Sterkfontein Member 4. Hands from Olduvai and Swartkrans do not provide sufficient evidence for assessment of power grip capabilities.  相似文献   
8.
9.
The completion of the genome sequence of the budding yeast Saccharomyces cerevisiae marks the dawn of an exciting new era in eukaryotic biology that will bring with it a new understanding of yeast, other model organisms, and human beings. This body of sequence data benefits yeast researchers by obviating the need for piecemeal sequencing of genes, and allows researchers working with other organisms to tap into experimental advantages inherent in the yeast system and learn from functionally characterized yeast gene products which are their proteins of interest. In addition, the yeast post-genome sequence era is serving as a testing ground for powerful new technologies, and proven experimental approaches are being applied for the first time in a comprehensive fashion on a complete eukaryotic gene repertoire.  相似文献   
10.
The relationships between prey utilization and jaw biomechanics were explored in two Caribbean populations (La Parguera and Mona Island) of four trigger-fishes. The volumetric contribution of major prey types and six biomechanical features of the jaws that characterize biting strength were contrasted between populations. At Mona, Xanthichthys ringens ate 45% benthic organisms, whereas conspecifics at La Parguera fed exclusively on plankton. Balistes vetula at Mona consumed 63% soft and nonelusive invertebrates, in contrast to their La Parguera conspecifics, which consumed 62% hard prey. Differences in diet between populations were associated with differences in jaw biomechanics. Xanthichthys at Mona had jaw muscles, bones, and closing-lever ratios larger than those of fish at La Parguera, indicating a stronger bite. Balistes at Mona had 50% smaller jaw bones, muscles, and closing-lever ratios than their La Parguera conspecifics, indicating a weaker but swifter bite. Melichthys niger and Cantherhines macrocerus ate similar prey at the two locations and showed little difference in trophic anatomy. We hypothesize that the interpopulation differences in morphology are induced by the activities of feeding on different prey and enhance the feeding ability of fishes for locally dominant prey. Plasticity of the feeding mechanism may be a widespread attribute of fish feeding systems that promotes the ability of species to occupy multiple habitat types successfully.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号