首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2017年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2002年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
追踪候鸟的迁徙活动是全面认识其生活史年周期的重要途径。中杓鹬(Numeniusphaeopus)在全球广泛分布,但在东亚-澳大利西亚候鸟迁飞区的迁徙活动一直缺乏追踪研究。2018年2月,在澳大利亚西北部的布鲁姆为捕捉到的中杓鹬成鸟佩戴平台发射终端或全球定位系统-全球移动通讯系统追踪器,以确定其迁徙日程、迁徙路线以及迁徙停歇地和繁殖地的地理位置。我们从成功追踪的7只个体获取了6 378条精度高于1 km的位点数据。分析结果表明,在春季,中杓鹬的迁徙时长为(36±4)d,其间在1~3个迁徙停歇地的停留日期为(23±2)d,从越冬地到繁殖地的迁徙距离为(9 795±346)km(n=7)。追踪的中杓鹬在俄罗斯东部和中部区域繁殖,不同个体的繁殖地纬度相近而经度范围较广。在秋季,中杓鹬的迁徙时长为(90±27)d,相比春季迁徙时长更长;其间,在2~4个迁徙停歇地停留(79±29)d,从繁殖地到越冬地的迁徙距离为(10 101±520)km(n=5)。无论在春季还是秋季迁徙,迁徙停歇地广泛分布于东亚、东南亚沿海及内陆区域。大部分个体春季和秋季的迁徙路线相近,成功追踪的个体均在秋季返回了上一年的越冬地,这表明中杓鹬对越冬地具有很高的忠诚度。  相似文献   
2.
The Salton Sea as critical habitat to migratory and resident waterbirds   总被引:5,自引:3,他引:2  
Concern about the Salton Sea ecosystem, based on potential impacts of increasing salinity, contaminants, disease outbreaks, and large die-offs of birds, is heightened because of tremendous prior loss and degradation of wetland habitat in western North America. In 1999, we used a variety of survey methods to describe patterns of abundance of birds at the Salton Sea and in adjacent habitats. Our results further documented the great importance of the Salton Sea within the Pacific Flyway to wintering, migratory, and breeding waterbirds. Exclusive of Eared Grebes, we estimated about 187000 individual waterbirds at the Salton Sea in January, 88000 in April, 170000 in August, and 261000 in November. Additional surveys of Eared Grebes in November and December suggested the total population of all waterbirds was about 434000 to 583000 in those months, respectively. We also documented breeding by about 14000 pairs of colonial waterbirds. Waterbirds were particularly concentrated along the northern, southwestern, southern, and southeastern shorelines and river deltas. By contrast, some species of wading birds (Cattle Egret, White-faced Ibis, Sandhill Crane) and shorebirds (Mountain Plover, Whimbrel, Long-billed Curlew) were much more numerous in agricultural fields of the Imperial Valley than in wetland habitats at the Sea. Various studies indicate the Salton Sea is of regional or national importance to pelicans and cormorants, wading birds, waterfowl, shorebirds, and gulls and terns. Important taxa are the Eared Grebe, American White Pelican, Double-crested Cormorant, Cattle Egret, White-faced Ibis, Ruddy Duck, Yuma Clapper Rail, Snowy Plover, Mountain Plover, Gull-billed, Caspian, and Black terns, and Black Skimmer. Proposed restoration projects should be carefully assessed to ensure they do not have unintended impacts and are not placed where large numbers of breeding, roosting, or foraging birds concentrate. Similarly, plans to enhance opportunities for recreation or commerce at the Sea should aim to avoid or minimize disturbance to birds. Future research should focus on filling gaps in knowledge needed to effectively conserve birds at the Salton Sea.  相似文献   
3.
4.
ABSTRACT.   The mouth of the Yangtze River is an important stopover site for migratory shorebirds using the East Asian-Australasian Flyway. From 1984 to 2004, we censused and banded shorebirds and monitored hunting activities at the mouth of the Yangtze River to understand how shorebirds used the study area. Counts and banding data revealed greater numbers of shorebirds at the mouth of the Yangtze River during northward migration (spring) than during southward migration (fall), with ratios varying from 1.5:1 to 7.2:1 at different sites from 1984 to 2005. The most common species observed during spring (northward) migration were Great Knots ( Calidris tenuirostris ), Red Knots ( Calidris canutus ), Bar-tailed Godwits ( Limosa lapponica ), Sharp-tailed Sandpipers ( Calidris acuminata ), and Red-necked Stints ( Calidris ruficollis ). During spring 2003–2004, 96.98% of the shorebirds observed were adults (ASY or older) and 3% were after hatching-year and second-year birds (AHY or SY). In contrast, almost all (94.73%) birds counted during the fall were hatching-year (HY) birds. These results indicate that adult shorebirds either use a different migration route during fall migration or use the same route, but do not stop at the mouth of the Yangtze River. HY birds, however, may depend on the coastal stopover sites for feeding during their first southward passage.  相似文献   
5.
Two frequent assumptions about the evolution of long-distance migration in birds are that they travel long distances annually to reach food-rich areas for breeding, and that they time their migratory journey to be at staging sites when the latter provide the best feeding conditions. These assumptions have rarely been properly tested, and there is no study in which a species’ major food types have been measured by standardized methods throughout a flyway and over a large part of the year. We here present such data for Eurasian teal (Anas crecca), converted to a common energetic currency, and collected at wintering, spring staging and breeding sites. Teal did not time migration to maximize local food abundance; most birds left wintering and spring staging sites before a sharp increase in invertebrate food abundance occurred. On the other hand, hatching of ducklings coincided with a peak in invertebrate food abundance on boreal breeding lakes. Mean overall food abundance (invertebrates and seeds combined) did not differ between wintering sites in southern France and breeding sites in northern Sweden at the time of breeding. Our results are inconsistent with the hypothesis that long-distance migration in dabbling ducks has evolved because adult birds gain an immediate pay-off in increased food abundance by flying north in spring. However, our data confirm a selective advantage for breeding at higher latitudes, because hatching of ducklings may coincide with a peak in invertebrate emergence and because longer days may increase the duration of efficient foraging.  相似文献   
6.
North American waterfowl harvest regulations are largely guided by the status of breeding populations. Nonetheless, understanding the demographics of wintering waterfowl populations can elucidate the effects of hunting pressure on population dynamics. The ring-necked duck (Aythya collaris) breeds and winters in all North American administrative flyways and is one of the most abundant and most harvested diving ducks in the Atlantic Flyway. But few studies have investigated the winter ecology of ring-necked ducks. We used a known-fate analysis to estimate period survival probability using data from 87 female ring-necked ducks marked with satellite transmitters in 2 regions of the southern Atlantic Flyway during winters of 2017–2018 and 2018–2019. Winter (128-day) survival probability was higher for individuals in the Red Hills region of southern Georgia and northern Florida (0.875, 95% CI = 0.691–0.952) than individuals in central South Carolina (0.288, 95% CI = 0.082–0.514). We attribute the regional disparity in winter survival probabilities to differences in hunting pressure, which are reflected in the number of harvests we observed in each region. Our findings warrant further investigation into regional variation in winter survival of southern Atlantic Flyway ring-necked ducks, and, specifically, the relationship between variable harvest pressure and winter survival and its influence on ring-necked duck population dynamics and adaptive harvest management decisions. © 2020 The Wildlife Society.  相似文献   
7.
8.
Wind farms offer a cleaner alternative to fossil fuels and can mitigate their negative effects on climate change. However, wind farms may have negative impacts on birds. The East China Coast forms a key part of the East Asian–Australasian Flyway, and it is a crucial region for wind energy development in China. However, despite ducks being the dominant animal taxon along the East China Coast in winter and considered as particularly vulnerable to the effects of wind farms, the potential negative impacts of wind farms on duck populations remain unclear. We therefore assessed the effects of wind farms on duck abundance, distribution, and habitat use at Chongming Dongtan, which is a major wintering site for ducks along the East Asian–Australasian Flyway, using field surveys and satellite tracking. We conducted seven paired field surveys of ducks inside wind farm (IWF) and outside wind farm (OWF) sites in artificial brackish marsh, paddy fields, and aquaculture ponds. Duck abundance was significantly higher in OWF compared with IWF sites and significantly higher in artificial brackish marsh than in aquaculture ponds and paddy fields. Based on 1,918 high‐resolution satellite tracking records, the main habitat types of ducks during the day and at night were artificial brackish marsh and paddy fields, respectively. Furthermore, grid‐based analysis showed overlaps between ducks and wind farms, with greater overlap at night than during the day. According to resource selection functions, habitat use by wintering ducks was impacted by distance to water, land cover, human activity, and wind farm effects, and the variables predicted to have significant impacts on duck habitat use differed between day and night. Our study suggests that wintering ducks tend to avoid wind turbines at Chongming Dongtan, and landscape of paddy fields and artificial wetlands adjoining natural wetlands is crucial for wintering ducks.  相似文献   
9.
Abstract The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (<3%), with equal movement between northern and southern wintering areas for Wrangel Island birds and little evidence of exchange between the Banks and northern Wrangel Island populations. Face staining was an unreliable indicator of wintering area. Our findings suggest that northern and southern Wrangel Island subpopulations should be considered a metapopulation in better understanding and managing Pacific Flyway lesser snow geese. Yet the absence of a strong population connection between Banks Island and Wrangel Island geese suggests that these breeding colonies can be managed as separate but overlapping populations. Additionally, winter population fidelity may be more important in lesser snow geese than in other species, and both breeding and wintering areas are important components of population management for sympatric wintering populations.  相似文献   
10.
Dense flocks of migratory shorebirds from diverse species often concentrate in the intertidal areas for stopover. Trophic structure, food partition, prey availability and selectivity, predation risk, and abiotic factors are often used to explain the differences in habitat use of coexisting shorebirds. We sampled the macrobenthos and surveyed the distribution of shorebird populations to study the effects of foraging strategies on the habitat use of shorebirds at Chongming Dongtan, an important stopover site for shorebirds on the East Asian–Australasian Flyway. Results show that the relative abundance of epifaunal macrobenthos in salt marshes was much higher than that in the bare flats, whereas the relative abundance of infaunal macrobenthos in salt marshes was much lower than that in bare flats. The relative abundance of two life forms of macrobenthos was similar in the transitional zones between the salt marshes and the bare flats. Shorebirds with different foraging strategies exhibited different habitat uses. Pause-travel shorebirds mainly utilized the salt-marsh fringes, while tactile continuous shorebirds relied heavily on the bare flats. There was no significant difference in habitat use for visual continuous shorebirds. The density of tactile continuous shorebirds was positively correlated with bivalve density, and that of visual continuous shorebirds positively with crustacean density. Meanwhile, the relative abundance of pause-travel foraging shorebirds was positively correlated with the relative abundance of epifaunal, but negatively with infaunal macrobenthos. In contrast, the relative abundance of tactile foraging shorebirds had a positive correlation with infaunal but a negative one with epifaunal life form. Therefore, foraging strategies may play important roles in shorebirds’ habitat use in intertidal areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号