首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   6篇
  国内免费   3篇
  168篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   4篇
  2012年   8篇
  2011年   10篇
  2010年   7篇
  2009年   6篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   5篇
  2004年   6篇
  2003年   8篇
  2002年   1篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   1篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1976年   2篇
  1970年   1篇
排序方式: 共有168条查询结果,搜索用时 12 毫秒
1.
Summary Flies (Musca domestica) avoid danger by initiating a rapid jump followed by flight. To identify the visual cues that trigger the escape response in the housefly, we measured the timing and probability of escapes when the fly was presented with a variety of visual stimuli created by moving targets toward it. Our results show that an escape response is triggered by an approaching dark disk, but not by a receding dark disk. On the other hand, a bright disk elicits escape only when it recedes. A disk with black and white rings is less effective at eliciting escape than is a dark solid disk of the same size. This indicates that the darkening contrast produced by an approaching stimulus is a more crucial parameter than expansion cues contained in the optical flow. Escape is also triggered by a horizontally moving dark edge, but not by a moving bright edge or by a grating. An examination of several visual parameters reveals that the darkening contrast, measured from the onset of stimulation to the start of escape is nearly constant for a variety of stimuli that trigger escape reliably. Thus darkening contrast, coupled with motion may be crucial in eliciting the visually evoked escape response. Other visual parameters such as time-to-contact or target angular velocity seem to be relatively unimportant to the timing of escapes.Abbreviations P s Probability of successful escape - r disk radius of disk target - r arena radius of shielding arena - v disk linear velocity of disk target - v edge linear velocity of edge - d disk angular velocity of disk target boundary - edge angular velocity of edge - escape target distance at escape - d start target distance before onset of target movement - h edge height of the edge above fly - x start distance from corner of triangle to start position of edge (0 or 50 mm) - x escape distance from corner of triangle to the position of the edge when the fly escapes - x center distance from corner of triangle to point above the center of the pad - x total distance from the corner of the triangle to the base (height of triangle = base of triangle)  相似文献   
2.
Summary In tethered flying houseflies (Musca domestica), the yaw torque produced by the wings is accompanied by postural changes of the abdomen and hindlegs. In free flight, these body movements would jointly lead to turning manoeuvres of the animal. By recording the yaw torque together with the lateral deflections of either the abdomen or the hindlegs, it is shown that these motor output systems act in a highly synergistic way during two types of visual orientation behavior, compensatory optomotor turning reactions and orientation turns elicited by moving objects. This high degree of coordination is particularly conspicuous for the pathway activated by moving objects. Here, orientation responses either may be induced or may fail to be generated always simultaneously in all three motor output systems. This suggests that the pathway mediating orientation turns towards objects is gated before it segregates into the respective motor control systems of the wings, the abdomen and the hindlegs.  相似文献   
3.
Summary In the fly, Calliphora erythrocephala, a cluster of three Y-shaped descending neurons (DNOVS 1–3) receives ocellar interneuron and vertical cell (VS4–9) terminals. Synaptic connections to one of them (DNOVS 1) are described. In addition, three types of small lobula plate vertical cell (sVS) and one type of contralateral horizontal neuron (Hc) terminate at DNOVS 1, as do two forms of ascending neurons derived from thoracic ganglia. A contralateral neuron, with terminals in the opposite lobula plate, arises at the DNOVS cluster and is thought to provide heterolateral interaction between the VS4–9 output of one side to the VS4–9 dendrites of the other. DNOVS 2 and 3 extend through pro-, meso-, and metathoracic ganglia, branching ipsilaterally within their tract and into the inner margin of leg motor neuropil of each ganglion. DNOVS 1 terminates as a stubby ending in the dorsal prothoracic ganglion onto the main dendritic trunks of neck muscle motor neurons. Convergence of VS and ocellar interneurons to DNOVS 1 comprises a second pathway from the visual system to the neck motor, the other being carried by motor neurons arising in the brain. Their significance for saccadic head movement and the stabilization of the retinal image is discussed.  相似文献   
4.
Summary In the lamina ganglionaris, the first optic ganglion of the fly, the inventory of cell types as well as the patterns of their connections are well known from light microscopic investigations. Even the synaptic contacts are known with relative completeness. However, the structural details visible on electron micrographs are very difficult to interpret in functional terms. This paper concentrates on two aspects: 1) the synaptic complex between a retinula cell axon and four postsynaptic elements, arranged in a constant elongated array (it is suggested that all synapses in which the retinula cell is presynaptic are of this kind), and 2) the gnarl complex in which a presynaptic specialization in one neuron is separated from another neuron by a complicated glial invagination. The participation of glia at postsynaptic sites seems to be quite common in this ganglion. Occasionally it seems that a glia cell is the only postsynaptic partner facing a presynaptic specialization within a neuron.  相似文献   
5.
Salient sensory environments experienced by a parental generation can exert intergenerational influences on offspring. While these data provide an exciting new perspective on biological inheritance, questions remain about causes and consequences of intergenerational influences of salient sensory experience. We previously showed that exposing male mice to a salient olfactory experience, like olfactory fear conditioning, resulted in offspring demonstrating a sensitivity to the odor used to condition the paternal generation and possessing enhanced neuroanatomical representation for that odor. In this study, we first injected RNA extracted from sperm of male mice that underwent olfactory fear conditioning into naïve single‐cell zygotes and found that adults that developed from these embryos had increased sensitivity and enhanced neuroanatomical representation for the odor (Odor A) with which the paternal male had been conditioned. Next, we found that female, but not male offspring sired by males conditioned with Odor A show enhanced consolidation of a weak single‐trial Odor A + shock fear conditioning protocol. Our data provide evidence that RNA found in the paternal germline after exposure to salient sensory experiences can contribute to intergenerational influences of such experiences, and that such intergenerational influences confer an element of adaptation to the offspring. In so doing, our study of intergenerational influences of parental sensory experience adds to existing literature on intergenerational influences of parental exposures to stress and dietary manipulations and suggests that some causes (sperm RNA) and consequences (behavioral flexibility) of intergenerational influences of parental experiences may be conserved across a variety of parental experiences.  相似文献   
6.
Carrion flower stapeliads are examples of olfactory mimicry, forming sapromyiophilous flowers, which mimic food sources or oviposition sites to attract fly pollinators. The aim of this work was to investigate the ultrastructure of osmophores involved in the release of the carrion odor of Orbea variegata and Boucerosia indica flowers. In spite of their similar architecture (epidermal epithelium+subepidermal secretory layers), the osmophores of stapeliads feature some differences in morphology and ultrastructure. The epidermal epithelial cells of O. variegata and B. indica differ in shape, but both are extremely rich in endoplasmic reticulum and flocculent material in the vacuole. Unlike the Orbea, Boucerosia has starchless leucoplasts in the epidermal epithelium. Orbea features a cuticle with microchannels, while Boucerosia has a different mechanism for the pathway of scent substances to the cell exterior. They are released by rupturing of the outer layer of cuticle at the apex of the papillae. The epidermal cells of the adaxial corolla differ even between parts of the corolla, the corolla lobes and the annulus in the flower. This diversity may be connected with an odor gradient. The morphological and anatomical features of stapeliad (subtribe Stapeliinae) osmophores are generally similar to osmophores of members of subtribe Ceropegiinae (Ceropegia), thus, we suggest that this model of osmophores evolved before early diversification of Ceropegieae. The ultrastructural features of stapeliad osmophores are generally similar to those of Araceae, Orchidaceae and Passifloraceae.  相似文献   
7.
In order to understand the attachment mechanism of flies, it is important to clarify the question of how the adhesive pad (pulvillus) builds and breaks the contact with the substrate. By using normal and high-speed video recordings, the present study revealed that pulvilli are positioned on the surface in a particular way. The pulvilli are apparently loaded or pressed upon the substrate after leg contact, as evidenced by splaying of the claws. Detachment of pulvilli from the substrate may be achieved in four different modes depending on the leg (fore-, mid- or hindleg): pulling, shifting, twisting, and lifting. Lifting is the only detachment mode depending on the claws' action. Kinematics of the tarsal chain is studied in leg preparations, in which the tendon of the claw flexor muscle was pulled by tweezers and video recorded. The morphological background of tarsal movements during attachment and detachment is studied by scanning electron microscopy, fluorescent microscopy, and bright field light microscopy followed by serial semithin sectioning of pretarsal structures. Several resilin-bearing springs are involved in the recoil of the tarsal segments to their initial position, when the tendon is released after pull.  相似文献   
8.
Animals learn to recognize and respond to a variety of dangerous factors, with biting and blood-feeding flies being among the most prevalent of natural stressors. Here we describe the behavioral avoidance and hormonal (corticosterone) stress responses to biting fly exposure and the roles of individual and social learning in the acquisition of these fear-associated responses. Male mice exposed to a single 30-min session of attack by intact biting flies (stable fly, Stomoxys calcitrans L.) exhibited increased plasma corticosterone levels and active self-burying responses to avoid the flies. When exposed 24 h later to altered flies whose biting mouth parts were removed and were incapable of biting, the mice displayed conditioned increases in corticosterone and avoidance responses. This conditioned increase in corticosterone and self-burying was also acquired through social learning without direct individual experience with the intact biting flies. Fly naive "observer" mice that witnessed other "demonstrator" mice being attacked by biting flies, but were not exposed to intact flies themselves, displayed increases in corticosterone levels and self-burying to avoid flies when exposed 24 h later to altered flies. The social learning was not due to social facilitation or sensitization. Observers had to witness the self-burying avoidance responses of the demonstrator to the biting flies in order to subsequently recognize a potential threat to themselves and display the appropriate responses. These individually and socially acquired conditioned fear responses are likely part of the mechanisms that allow animals to defend themselves from biting and blood-feeding arthropods.  相似文献   
9.
The morphology of the larval ventromental plates of Y. tahitiensis Sublette & Martin and four Oceanian species of Chironomus Meigen, C. hawaiiensis Grimshaw, C. javanus Kieffer, C. magnivalva Kieffer and C. samoensis Edwards, has been studied by scanning electron micrography. Data on ventromental plate ultrastructure are used in phenetic and cladistic analyses of the relationships of T. tahitiensis and the Oceanian Chironomus to other species in Chironomus and additional genera. The results of these analyses support the current generic status of T. tahitiensis but indicate that Yama is less closely related to Chironomus than previously supposed, a finding that is supported by a reexamination of ‘traditional’ morphological features.  相似文献   
10.
The amygdaloid complex functions to facilitate effective appraisal of the social environment and is an essential component of the neural systems subserving social behavior. Despite its critical role in mediating social interaction, the amygdaloid complex has not attracted the same attention as the isocortex in most evolutionary analyses. We performed a comparative analysis of the amygdaloid complex in the hominoids to address the lack of comparative information available for this structure in the hominoid brain. We demarcated the amygdaloid complex and the three nuclei constituting its basolateral division, the lateral, basal, and accessory basal nuclei, in 12 histological series representing all six hominoid species. The volumes obtained for these areas were subjected to allometric analyses to determine whether any species deviated from expected values based on the other hominoids. Differences between groups were addressed using nonparametric comparisons of means. The human lateral nucleus was larger than predicted for an ape of human brain size and occupied the majority of the basolateral division, whereas the basal nucleus was the largest of the basolateral nuclei in all ape species. In orangutans the amygdala and basolateral division were smaller than in the African apes. While the gorilla had a smaller than predicted lateral nucleus, its basal and accessory basal nuclei were larger than predicted. These differences may reflect volumetric changes occurring in interconnected cortical areas, specifically the temporal lobe and orbitofrontal cortex, which also subserve social behavior and cognition, suggesting that this system may be acted upon in hominoid and hominid evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号