首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   2篇
  国内免费   2篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   1篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2010年   8篇
  2009年   3篇
  2008年   3篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   2篇
  2003年   6篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
排序方式: 共有112条查询结果,搜索用时 15 毫秒
1.
Abstract A susceptibility of 63 clinical isolates of Klebsiella pneumoniae to inorganic and organic mercuric compounds was determined. 18 of them were found to be resistant to fluorescein mercuric acetate (FMA) and merbromin (MB). Moreover, all the resistant strains inactivate the antibacterial effect of FMA. The changes in the amount of organic mercury at the time of inactivation of the drug and the structures of the end products were examined in detail with the plasmid-bearing strain JK9 and its transconjugants of Escherichia coli .
The results showed that FMA was inactivated by an intracellular enzyme produced inducively and was degraded to fluorescein (sodium salt, uranine), which led to the sedimentation of metallic mercury. The discovery of the genes conferring inducible organic mercury-inactivating enzymes determined by plasmids was the next step and their application in the recovery of metallic mercury from organomercurials is now imminent.  相似文献   
2.
The viability of conidia from two species of deuteromycetes fungi pathogenic to insects was determined using two fluorochrome stains, fluorescein diacetate (FDA) and propidium iodide (PI). These stains were used either alone or in combination, and results were compared with standard conidial germination tests. FDA fluoresces bright green in viable conidia and PI fluoresces red in non-viable conidia, when viewed using specific fluorescence microscopic techniques. Conidia from two isolates of Paecilomyces fumosoroseus (Wize) Brown and Smith and two isolates of Beauveria bassiana (Balsamo) Vuillemin were evaluated. Conidia were suspended in deionized water and half of each suspension was treated with microwave radiation to kill all the conidia. Conidia were tested for viability in non-microwaved suspensions in a mixture (ca. 1:1) of viable and non-viable conidial suspensions, and in the microwaved suspensions that contained all non-viable conidia. No significant differences were observed for the four isolates tested between germination tests on water and agar and viability tests conducted with FDA alone or FDA in combination with PI. One isolate of B. bassiana that had been damaged in storage was also tested. Differences were observed between the actual germination and the percentage of viability determined using FDA or FDA plus PI. Damaged conidia maintained a measure of viability and fluoresced green, but did not fully germinate.  相似文献   
3.
Both phosphointermediate- and vacuolar-type (P- and V-type, respectively) ATPase activities found in cholinergic synaptic vesicles isolated from electric organ are immunoprecipitated by a monoclonal antibody to the SV2 epitope characteristic of synaptic vesicles. The two activities can be distinguished by assay in the absence and presence of vanadate, an inhibitor of the P-type ATPase. Each ATPase has two overlapping activity maxima between pH 5.5 and 9.5 and is inhibited by fluoride and fluorescein isothiocyanate. The P-type ATPase hydrolyzes ATP and dATP best among common nucleotides, and activity is supported well by Mg2+, Mn2+, or Co2+ but not by Ca2+, Cd2+, or Zn2+. It is stimulated by hyposmotic lysis, detergent solubilization, and some mitochondrial uncouplers. Kinetic analysis revealed two Michaelis constants for MgATP of 28 microM and 3.1 mM, and the native enzyme is proposed to be a dimer of 110-kDa subunits. The V-type ATPase hydrolyzes all common nucleoside triphosphates, and Mg2+, Ca2+, Cd2+, Mn2+, and Zn2+ all support activity effectively. Active transport of acetylcholine (ACh) also is supported by various nucleoside triphosphates in the presence of Ca2+ or Mg2+, and the Km for MgATP is 170 microM. The V-type ATPase is stimulated by mitochondrial uncouplers, but only at concentrations significantly above those required to inhibit ACh active uptake. Kinetic analysis of the V-type ATPase revealed two Michaelis constants for MgATP of approximately 26 microM and 2.0 mM. The V-type ATPase and ACh active transport were inhibited by 84 and 160 pmol of bafilomycin A1/mg of vesicle protein, respectively, from which it is estimated that only one or two V-type ATPase proton pumps are present per synaptic vesicle. The presence of presumably contaminating Na+,K(+)-ATPase in the synaptic vesicle preparation is demonstrated.  相似文献   
4.
5.
FLOTILLIN-1 and FLOTILLIN-2 are membrane rafts associated proteins that have been implicated in insulin and growth factor signaling, endocytosis, cell migration, proliferation, differentiation, cytoskeleton remodeling and membrane trafficking. Furthermore, FLOTILLINs also play important roles in the progression of cancer and neurodegenerative diseases. In this study, the roles of flotillins are investigated in planarian Dugesia japonica. The results show that Djflotillin-1 and Djflotillin-2 play a key role in homeostasis maintenance and regeneration process by regulating the proliferation of the neoblast cells, they are not involved in the maintenance and regeneration of the central nervous system in planarians.  相似文献   
6.
We employed human red blood cells as a model system to check the affinity of MRP1 (Multidrug Resistance-associated Protein 1) towards fluorescein and a set of its carboxyl derivatives: 5/6-carboxyfluorescein (CF), 2,7-bis-(2-carboxyethyl)-5/6-carboxyfluorescein (BCECF) and calcein (CAL). We found significant differences in the characteristics of transport of the dyes tested across the erythrocyte membrane. Fluorescein is transported mainly in a passive way, while active efflux systems at least partially contribute to the transport of the other compounds. Inside-out vesicle studies revealed that active transport of calcein is masked by another, ATP-independent, transport activity. Inhibitor profiles of CF and BCECF transport are typical for substrates of organic anion transporters. BCECF is transported mainly via MRP1, as proven by the use of QCRL3, a monoclonal antibody known to specifically inhibit MRP1-mediated transport. Lack of effect of QCRL3 on CF uptake excludes the possibility of MRP1 being a transporter of this dye. No inhibition of CF accumulation by cGMP, thioguanine and 6-mercaptopurine suggests also that this fluorescent marker is not a substrate for MRP5, another ABC transporter identified in the human erythrocyte membrane.  相似文献   
7.
We have developed an automated large-volume sample stacking (LVSS) procedure to detect fluorescein isothiocyanate-labeled peptides in the picomolar range. The injection duration is 10 min at 50 mbar to fill 62% of the capillary volume to the detection cell. The calculated limit of detection (S/N=3), filling 1% of the capillary volume, is 74 pM for bradykinin and 45 pM for L-enkephalin with samples diluted in water and analyzed in a 50 mM borate buffer, pH 9.2. With the automated LVSS system, the limits of detection are 7 pM for bradykinin, 3 pM for L-enkephalin and 2 pM for substance P. LVSS is shown to be quantitative from 500 to 10 pM.  相似文献   
8.
Cationic antimicrobial peptides (CAMPs) are novel candidates for drug development. Here we describe design of six short and potent CAMPs (SA-1 to SA-6) based on a minimalist template of 12 residues H+HHG+HH+HH+NH2 (where H: hydrophobic amino acid and +: charged hydrophilic amino acid). Designed peptides exhibit good antibacterial activity in micro molar concentration range (1-32 μg/ml) and rapid clearance of Gram-positive and Gram-negative bacterial strains at concentrations higher than MIC. For elucidating mode of action of designed peptides various biophysical studies including CD and Trp fluorescence were performed using model membranes. Further based on activity, selectivity and membrane bound structure; modes of action of Trp rich peptide SA-3 and template based peptide SA-4 were compared. Calcein dye leakage and transmission electron microscopic studies with model membranes exhibited selective membrane active mode of action for peptide SA-3 and SA-4. Extending our work from model membranes to intact E. coli ATCC 11775 in scanning electron micrographs we could visualize different patterns of surface perturbation caused by peptide SA-3 and SA-4. Further at low concentration rapid translocation of FITC-tagged peptide SA-3 into the cytoplasm of E. coli cells without concomitant membrane perturbation indicates involvement of intracellular targeting mechanism as an alternate mode of action as was also evidenced in DNA retardation assay. For peptide SA-4 concentration dependent translocation into the bacterial cytoplasm along with membrane perturbation was observed. Establishment of a non specific membrane lytic mode of action of these peptides makes them suitable candidates for drug development.  相似文献   
9.
Leaf senescence is characterised by a massive degradation of proteins in order to recycle nitrogen to other parts of the plant, such as younger leaves or developing grain/seed. Protein degradation during leaf senescence is a highly regulated process and it is suggested that proteins to be degraded are marked by an oxidative modification (carbonylation) that makes them more susceptible to proteolysis. However, there is as yet no evidence of an increase in protein carbonylation level during natural leaf senescence. The aim of our study was thus to monitor protein carbonylation level during the process of natural senescence in the flag leaf of field‐grown winter wheat plants. For this purpose, we adapted a fluorescence‐based method using fluorescein‐5‐thiosemicarbazide (FTC) as a probe for detecting protein carbonyl derivatives. As used for the first time on plant material, this method allowed the detection of both quantitative and qualitative modifications in protein carbonyl levels during the last stages of wheat flag leaf development. The method described herein represents a convenient, sensitive and reproducible alternative to the commonly used 2,4‐dinitrophenylhydrazine (DNPH)‐based method. In addition, our analysis revealed changes in protein carbonylation level during leaf development that were associated with qualitative changes in protein abundance and carbonylation profiles. In the senescing flag leaf, protein carbonylation increased concomitantly with a stimulation of endoproteolytic activity and a decrease in protein content, which supports the suggested relationship between protein oxidation and proteolysis during natural leaf senescence.  相似文献   
10.
Described is the synthesis of three different fluorescein-tagged derivatives of a macrocycle, and their binding affinity to heat shock protein 90 (Hsp90). Using fluorescence polarization anisotropy, we report the binding affinity of these fluorescein-labeled compounds to Hsp90 in its open state and ATP-dependent closed state. We show that the compounds demonstrate a conformation-dependent preference for binding to the closed state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号