首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   5篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2016年   6篇
  2015年   5篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
Although conformity as a major driver for human cultural evolution is a well-accepted and intensely studied phenomenon, its importance for non-human animal culture has been largely overlooked until recently. This limited for decades the possibility of studying the roots of human culture. Here, we provide a historical review of the study of conformity in both humans and non-human animals. We identify gaps in knowledge and propose an evolutionary route towards the sophisticated cultural processes that characterize humanity. A landmark in the study of conformity is Solomon Asch's famous experiment on humans in 1955. By contrast, interest in conformity among evolutionary biologists has only become salient since the turn of the new millennium. A striking result of our review is that, although studies of conformity have examined many biological contexts, only one looked at mate choice. This is surprising because mate choice is probably the only context in which conformity has self-reinforcing advantages across generations. Within a metapopulation, i.e. a group of subpopulations connected by dispersing individuals, dispersers able to conform to the local preference for a given type of mate have a strong and multigenerational fitness advantage. This is because once females within one subpopulation locally show a bias for one type of males, immigrant females who do not conform to the local trend have sons, grandsons, etc. of the non-preferred phenotype, which negatively and cumulatively affects fitness over generations in a process reminiscent of the Fisher runaway process. This led us to suggest a sex-driven origin of conformity, indicating a possible evolutionary route towards animal and human culture that is rooted in the basic, and thus ancient, social constraints acting on mating preferences within a metapopulation. In a generic model, we show that dispersal among subpopulations within a metapopulation can effectively maintain independent Fisher runaway processes within subpopulations, while favouring the evolution of social learning and conformity at the metapopulation scale; both being essential for the evolution of long-lasting local traditions. The proposed evolutionary route to social learning and conformity casts surprising light on one of the major processes that much later participated in making us human. We further highlight several research avenues to define the spectrum of conformity better, and to account for its complexity. Future studies of conformity should incorporate experimental manipulation of group majority. We also encourage the study of potential links between conformity and mate copying, animal aggregations, and collective actions. Moreover, validation of the sex-driven origin of conformity will rest on the capacity of human and evolutionary sciences to investigate jointly the origin of social learning and conformity. This constitutes a stimulating common agenda and militates for a rapprochement between these two currently largely independent research areas.  相似文献   
2.
Mating traits and mate preferences often show patterns of tight correspondence across populations and species. These patterns of apparent coevolution may result from a genetic association between traits and preferences (i.e. trait–preference genetic covariance). We review the literature on trait–preference covariance to determine its prevalence and potential biological relevance. Of the 43 studies we identified, a surprising 63% detected covariance. We test multiple hypotheses for factors that may influence the likelihood of detecting this covariance. The main predictor was the presence of genetic variation in mate preferences, which is one of the three main conditions required for the establishment of covariance. In fact, 89% of the nine studies where heritability of preference was high detected covariance. Variables pertaining to the experimental methods and type of traits involved in different studies did not greatly influence the detection of trait–preference covariance. Trait–preference genetic covariance appears to be widespread and therefore represents an important and currently underappreciated factor in the coevolution of traits and preferences.  相似文献   
3.
Our understanding of the evolutionary stability of socially selected traits is dominated by sexual selection models originating with R. A. Fisher, in which genetic covariance arising through assortative mating can trigger exponential, runaway trait evolution. To examine whether nonreproductive, socially selected traits experience similar dynamics—social runaway—when assortative mating does not automatically generate a covariance, we modeled the evolution of socially selected badge and donation phenotypes incorporating indirect genetic effects (IGEs) arising from the social environment. We establish a social runaway criterion based on the interaction coefficient, ψ , which describes social effects on badge and donation traits. Our models make several predictions. (1) IGEs can drive the original evolution of altruistic interactions that depend on receiver badges. (2) Donation traits are more likely to be susceptible to IGEs than badge traits. (3) Runaway dynamics in nonsexual, social contexts can occur in the absence of a genetic covariance. (4) Traits elaborated by social runaway are more likely to involve reciprocal, but nonsymmetrical, social plasticity. Models incorporating plasticity to the social environment via IGEs illustrate conditions favoring social runaway, describe a mechanism underlying the origins of costly traits, such as altruism, and support a fundamental role for phenotypic plasticity in rapid social evolution.  相似文献   
4.
Runaway sexual selection when female preferences are directly selected   总被引:2,自引:0,他引:2  
We introduce models for the runaway coevolution of female mating preferences and male display traits. The models generalize earlier results by allowing for direct natural selection on the preference, arbitrary forms of mate choice, and fairly general assumptions about the underlying genetics. Results show that a runaway is less likely when there is direct selection on the preference, but that it is still possible if there is a sufficiently large phenotypic correlation between the female's preference and the male's trait among mated pairs. Comparison of three preference functions introduced by Lande (1981) shows that open-ended preferences are particularly prone to a runaway, and that absolute preferences require very large differences between females in their preferences. We analyze the causes of the runaway seen in a model developed by Iwasa and Pomiankowski (1995).  相似文献   
5.
6.
Female preferences for specific male phenotypes have been documented across a wide range of animal taxa, including numerous species where males contribute only gametes to offspring production. Yet, selective pressures maintaining such preferences are among the major unknowns of evolutionary biology. Theoretical studies suggest that preferences can evolve if they confer genetic benefits in terms of increased attractiveness of sons ("Fisherian" models) or overall fitness of offspring ("good genes" models). These two types of models predict, respectively, that male attractiveness is heritable and genetically correlated with fitness. In this meta-analysis, we draw general conclusions from over two decades worth of empirical studies testing these predictions (90 studies on 55 species in total). We found evidence for heritability of male attractiveness. However, attractiveness showed no association with traits directly associated with fitness (life-history traits). Interestingly, it did show a positive correlation with physiological traits, which include immunocompetence and condition. In conclusion, our results support "Fisherian" models of preference evolution, while providing equivocal evidence for "good genes." We pinpoint research directions that should stimulate progress in our understanding of the evolution of female choice.  相似文献   
7.
Female mating preferences are often flexible, reflecting the social environment in which they are expressed. Associated indirect genetic effects (IGEs) can affect the rate and direction of evolutionary change, but sexual selection models do not capture these dynamics. We incorporate IGEs into quantitative genetic models to explore how variation in social environments and mate choice flexibility influence Fisherian sexual selection. The importance of IGEs is that runaway sexual selection can occur in the absence of a genetic correlation between male traits and female preferences. Social influences can facilitate the initiation of the runaway process and increase the rate of trait elaboration. Incorporating costs to choice do not alter the main findings. Our model provides testable predictions: (1) genetic covariances between male traits and female preferences may not exist, (2) social flexibility in female choice will be common in populations experiencing strong sexual selection, (3) variation in social environments should be associated with rapid sexual trait divergence, and (4) secondary sexual traits will be more elaborate than previously predicted. Allowing feedback from the social environment resolves discrepancies between theoretical predictions and empirical data, such as why indirect selection on female preferences, theoretically weak, might be sufficient for preferences to become elaborated.  相似文献   
8.
Autonomic, thermally‐induced shutdown of Lithium‐ion (Li‐ion) batteries is demonstrated by incorporating thermoresponsive polymer microspheres (ca. 4 μm) onto battery anodes or separators. When the internal battery environment reaches a critical temperature, the microspheres melt and coat the anode/separator with a nonconductive barrier, halting Li‐ion transport and shutting down the cell permanently. Three functionalization schemes are shown to perform cell shutdown: 1) poly(ethylene) (PE) microspheres coated on the anode, 2) paraffin wax microspheres coated on the anode, and 3) PE microspheres coated on the separator. Charge and discharge capacity is measured for Li‐ion coin cells containing microsphere‐coated anodes or separators as a function of capsule coverage. For PE coated on the anode, the initial capacity of the battery is unaffected by the presence of the PE microspheres up to a coverage of 12 mg cm?2 (when cycled at 1C), and full shutdown (>98% loss of initial capacity) is achieved in cells containing greater than 3.5 mg cm?2. For paraffin microspheres coated on the anode and PE microspheres coated on the separator, shutdown is achieved in cells containing coverages greater than 2.9 and 13.7 mg cm?2, respectively. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and resolidification of PE into the anode and polymer film formation at the anode/separator interface.  相似文献   
9.
10.
We set out to investigate if E. coli genotype plays a significant role in host strain selection for optimal processing of plasmid DNA based on both quality and quantity of supercoiling. Firstly 17 E. coli commercial and non-commercial strains were selected and their available genetic backgrounds were researched in the open literature. Growth characteristics of all the strains were considered and made impartial by using a common medium and growth condition platform. By keeping the growth conditions constant for each strain/plasmid combination, we are only looking at one variable which is the host strain. The second step was to attempt to correlate the findings with common genotype characteristics (e.g. mutations such as endA or recA). We found that one can screen the number of strains which are likely to give good productivity early on, before any further optimisation and verification is performed, both for small and large plasmids. Also, it is worth noting that complex plasmid interactions with each strain prevent the use of genotype alone in making an intelligent choice for supercoiling optimisation. This leads to a third optimisation step selecting a few of the potentially high performing strains based on high DNA yield and supercoiling, with a view to identify the factors which need improvement in strain design and bioreactor optimisation. We found that high specific growth rates of some strains did not affect the level of DNA supercoiling but did influence the total plasmid yield, potentially an important aspect in the design of fermentation strategy. Interestingly, a few host/plasmid combinations result in what appears to be runaway plasmid replication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号