首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   6篇
  国内免费   13篇
  416篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   22篇
  2013年   22篇
  2012年   13篇
  2011年   27篇
  2010年   32篇
  2009年   17篇
  2008年   27篇
  2007年   25篇
  2006年   22篇
  2005年   16篇
  2004年   19篇
  2003年   17篇
  2002年   9篇
  2001年   2篇
  2000年   8篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   8篇
  1994年   11篇
  1993年   9篇
  1992年   9篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   7篇
  1987年   6篇
  1986年   6篇
  1985年   6篇
  1984年   9篇
  1983年   6篇
  1982年   6篇
  1981年   1篇
  1980年   3篇
排序方式: 共有416条查询结果,搜索用时 15 毫秒
1.
The content and the biosynthesis of fibronectin was examined in disease-free articular cartilage and in articular cartilage from osteoarthritic canine joints. Fibronectin content was increased in extracts of cartilage from osteoarthritic joints. Incubation of cartilage in vitro with [3H]phenylalanine and subsequent isolation of [3H]fibronectin from a gelatin affinity column and characterization by SDS-polyacrylamide gel electrophoresis and by immunoprecipitation indicated that disease-free and osteoarthritic cartilage explants synthesized fibronectin. About 50% of the [3H]fibronectin was recovered in the incubation medium. The osteoarthritic cartilage synthesized and accumulated up to 5-fold more [3H]fibronectin than disease-free cartilage.  相似文献   
2.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.  相似文献   
3.
Summary The distribution of fibronectin mRNA and fibronectin in adult human retina and epiretinal membranes was investigated by in situ hybridisation and immunohistochemical techniques. The cells in normal adult retina contained little or no fibronectin mRNA and the retina only showed fibronectin immunoreactivity in retinal vessels. The cells in detached neuroretina did not contain fibronectin message but the vitreoretinal interface of the detached retina exhibited variable fibronectin immunoreactivity. Retinal glia, retinal pigment epithelium and fibroblast-like cells in membranes at the vitreoretinal juncture (epiretinal membranes) showed variable labelling with the fibronectin mRNA probe and all the membranes immunostained for fibronectin. No difference could be detected between membrane cell types in the intensity of labelling with the mRNA probe or for fibronectin immunoreactivity. The results indicate that cells in situ in attached and detached adult human retina do not produce fibronectin. Although fibronectin at the vitreoretinal juncture in retinal detachment is probably partly derived from plasma fibronectin resulting from breakdown of the blood-retinal barrier, ectopic retinal cells produce fibronectin and contribute to the glycoprotein in epiretinal membranes.  相似文献   
4.
Summary Most hybrids betweenBufo bufo andB. calamita obtained by nuclear transplantation become arrested at the early gastrula stage. In both parental controls and the hybrid embryos, the presence and distribution of extracellular matrix was analysed with fluorescent wheat germ agglutinin and by immunolabelling with antibodies directed against fibronectin. InB. bufo andB. calamita gastrulae and in the few hybrids that complete gastrulation, the inner surface of the blastocoel roof is covered by a fibronectin-rich fibrillar matrix. In nucleocytoplasmic hybrids whose development was arrested at the gastrula stage, the fibronectin-containing extracellular matrix was either totally absent or poorly developed and disorganized.  相似文献   
5.
Cell-substrate adhesion was quantified for two cultured mesothelioma cell lines (epitheliomatus and sarcomatous) on glass, fibronectin and laminin substrates. Interference reflection microscopy (IRM) was used to image the adhesion patterns of cells and a grey level analysis was employed to quantify adhesion. Sarcomatous cells demonstrated marked adhesion to glass and fibronectin-coated substrates but not to laminin-coated substrate, with the greatest adhesion occurring on the fibronectin-coated surface. This adhesion was accompanied by cytoplasmic spreading. By contrast, epitheliomatous cells showed little tendency to adhere to any of the substrates and only showed significant spreading when in contact with the laminin substrate (P < 0.01). A bioassay was used to determine the metastatic potential of each of the cell lines. Via the intravenous route, the sarcomatous cells killed the host rats in 24.7 ± 1.5 (S.D.) days compared to 27.3 ± 0.9 (S.D.) days for the epitheliomatous cells (P < 0.01). After subcutaneous inoculation of tumour cells, the sarcomatous cells killed the host rats in 54.7 ± 0.7 (S.D.) days compared to 48.5 ± 0.5 (S.D.) days for the epitheliomatous cells (P < 0.01). We conclude that the results of the metastasis bioassays were consistent with the predicted behavior of these cell lines based on their ability to adhere to substrates in the in vitro adhesion assays.  相似文献   
6.
应用纤维连接素(Fn)、S—100蛋白、胶质纤维酸性蛋白(GFAP)、细胞角蛋白(CK)和神经特异性烯醇蛋白(NSE)5种抗体对63例正常人垂体前叶内滤泡星状细胞(FSC)进行了免疫细胞化学研究。结果表明:人FSC内26.9%S_(100)阳性,9.3%GFAP阳性,63.8%两者都为阳性。CK、NSE和Fn均为阳性。从而提示了FSC来自神经外胚层的原始细胞而非Rathke's囊上皮的残留。  相似文献   
7.
Summary The present report firstly describes a pilot study in which, during early development of embryos of the common carp, Cyprinus carpio, the cellular adhesion to fibronectin (FN) was blocked by administration of GRGDS peptide (which binds to the FN-receptor). As this treatment resulted in developmental aberrations, suggesting a functional role for FN, the major part of the work was focussed on the distribution of reactivity of anti-FN antibodies during epiboly and gastrulation. GRGDS treatment had a concentration dependent effect on development. Incubation of embryos in 1.5 mg/ml from the 32-cell stage onwards caused a retardation of epiboly, which did not proceed beyond 60%. The embryos did not show involution, as was confirmed by histological study. These preliminary results suggest that FN is involved in both epiboly and gastrulation of carp embryos. During cleavage, no specific extracellular binding of anti-FN antiserum could be observed. However, binding to a number of cell membranes took place from early epiboly onwards. After the onset of gastrulation, we observed a gradually increasing number of the deepest epiblast cells, showing immunostaining on part of their surface, facing the yolk syncytial layer (YSL) or the involuted cells. During early epiboly, anti-FN binding was restricted to areas in front of the migratory hypoblast cells. Later on, binding was found at the border of hypoblast and epiblast cells. At 100% epiboly, some contact areas of epiblast and hypoblast showed a discontinuous lining of reactivity, whilst other areas appeared devoid of anti-FN binding sites. The results indicate that FN is involved in the migration and guidance of hypoblast cells during gastrulation in carp. Correspondence to: P. Gevers  相似文献   
8.
 人肝癌细胞株SMMC-7721经1μmol/L视黄酸和或2.5μmol/L亚硒酸钠处理后,膜上纤维连接蛋白沉着量逐日上升,且较相应天数的对照组细胞增加,而甲胎蛋白分泌量和~3H-TdR参入率被明显抑制。视黄酸和亚硒酸钠同时处理的联合组作用强度接近于两者单独使用时作用强度的加和。对以上结果和视黄酸及亚硒酸钠使肝癌细胞接触抑制恢复及表型逆转的关系作了讨论。  相似文献   
9.
Summary Recently fibronectin was shown to appear in the development of the chick for the first time as a thin band on the epiblastic side facing the hypoblast just prior to primitive streak formation. It was thus suggested that fibronectin might be instrumental in the migration of cells that lead to axis formation during primitive streak formation. In the present work we have examined simultaneously for the presence of fibronectin and the specific basement membrane glycoprotein laminin during primitive streak formation using immunofluorescence methods. Laminin was found to be expressed between the epiblast and the hypoblast of stage XIII1 chick blastoderms. During the immediately following process of streak formation the laminin was found to be continuously detectable throughout the area covered by the hypoblast, but disrupted on the streak area. Fibronectin was found to co-distribute with laminin in stage XIII and in the early primitive streak chick blastoderms. It is concluded that at stage XIII laminin and fibronectin form part of a basement membrane that is partially disrupted during the immediately following process of primitive streak formation in order to allow the migration of the streak-forming epiblastic cells during this morphogenetic process.  相似文献   
10.
Excessive proteolysis of fibronectin (FN) impairs tissue repair in chronic wounds. Since FN is essential in wound healing, our goal is to improve its proteolytic stability and at the same time preserve its biological activity. We have previously shown that reduced FN conjugated with polyethylene glycol (PEG) at cysteine residues is more proteolytically stable than native FN. Cysteine‐PEGylated FN supported cell adhesion and migration to the same extent as native FN. However, unlike native FN, cysteine‐PEGylated FN was not assembled into an extracellular matrix (ECM) when immobilized. Here, we present an alternative approach in which FN is preferentially PEGylated at lysine residues using different molecular weight PEGs. We show that lysine PEGylation does not perturb FN secondary structure. PEG molecular weight, from 2 to 10 kDa, positively correlates with FN–PEG proteolytic stability. Cell adhesion, cell spreading, and gelatin binding decrease with increasing molecular weight of PEG. The 2‐kDa FN–PEG conjugate shows comparable cell adhesion to native FN and binds gelatin. Moreover, immobilized FN–PEG is assembled into ECM fibrils. In summary, lysine PEGylation of FN can be used to stabilize FN against proteolytic degradation with minimal perturbation to FN structure and retained biological activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号