首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   8篇
  国内免费   2篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   11篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2001年   1篇
  1995年   1篇
  1988年   1篇
  1977年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
1.
Summary LW13K2 cells, a clone of a spontaneously in vitro transformed derivative of embryonic Lewis rat fibroblastic cells, were studied by phase contrast cine-light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The ruffles found at the advancing edge of cells grown on glass substrates in vitro form and recede in a period of less than one min if they do not make an attachment of the substrate. If they fail to make an attachment they may form pinocytotic channels near the leading edge as described by Price (1972) and/or collapse, generally backwards, towards the cell body. The spines which appear to reinforce the membranous ruffles are the last structures to disappear, and accumulate in an irregular array behind the ruffling edge; this area is behind that in which pinocytosis occurs. In comparison with the sparse numbers of ribosomes found in the trailing edge, they are present in notable concentrations near the leading, ruffling edge of the cell. No membrane vesicles have been found in or near the ruffling edges at the ruffle-spine concentration zone.  相似文献   
2.
TNF-like protein 1A (TL1A), a member of tumor necrosis factor family, recognized as a ligand of death receptor 3 (DR3) and decoy receptor 3 (DcR3). The interaction of TL1A and DR3 may participate in the pathogenesis of some autoimmune diseases including rheumatoid arthritis (RA). Our previous results showed that high concentrations of TL1A could be found in synovial and serum in RA patients, and it was correlated with disease severity. In addition, TL1A could promote Th17 differentiation induced by TGF-β and IL-6 and increased the production of IL-17A. In the present study, we found that TL1A could promote the expression of IL-6 on fibroblast-like synoviocytes (FLS) of RA patients via NF-κB and JNK signaling pathway. TL1A-stimulated FLS increased the percentage of Th17 of peripheral blood mononuclear cells (PBMC) in RA via the production of IL-6, a critical cytokine involved in the differentiation of Th17. Moreover, the blocking of tumor necrosis factor receptor 2 (TNFR2) decreased TL1A-stimulated IL-6 production by RA FLS. Our results suggest that TL1A was capable of acting on RA FLS to elevate IL-6 expression, which promoted the production of Th17. More importantly, we showed that TL1A could influence RA FLS through binding to TNFR2 rather than DR3 on FLS, which indicated that the treatment of TNF inhibitors not only blocked the TNF but also suppressed the TL1A in RA patients.  相似文献   
3.
4.
5.
Rheumatoid arthritis (RA) is a chronic autoimmune systemic inflammatory disease that is characterized by synovial inflammation and bone erosion. We have investigated the mechanism(s) by which essential trace metals may initiate and propagate inflammatory phenotypes in synovial fibroblasts. We used HIG-82, rabbit fibroblast-like synovial cells (FLS), as a model system for potentially initiating RA through oxidative stress. We used potassium peroxychromate (PPC, Cr+5), ferrous chloride (FeCl2, Fe+2), and cuprous chloride (CuCl, Cu+) trace metal agents as exogenous pro-oxidants. Intracellular ROS was quantified by fluorescence microscopy and confirmed by flow cytometry (FC). Protein expression levels were measured by western blot and FC, while ELISA was used to quantify the levels of cytokines. Trace metal agents in different valence states acted as exogenous pro-oxidants that generate reactive oxygen species (ROS), which signal through TLR4 stimulation. ROS/TLR4- coupled activation resulted in the release of HMGB1, TNF-α, IL-1β, and IL-10 in conjunction with upregulation of myeloid-related protein (MRP8/14) inflammatory markers that may contribute to the RA pathophysiology. Our results indicate that oxidant-induced TLR4 activation can release HMGB1 in combination with other inflammatory cytokines to mediate pro-inflammatory actions that contribute to RA pathogenesis. The pathway by which inflammatory and tissue erosive changes may occur in this model system possibly underlies the need for functioning anti-HMGB1-releasing agents and antioxidants that possess both dual trace metal chelating and oxidant scavenging properties in a directed combinatorial therapy for RA.  相似文献   
6.
Aminopeptidase N (APN)/CD13 is a transmembrane ectoenzyme expressed on a wide variety of cells. With respect to haematopoietic cells, APN/CD13 has been considered specific for the myeloid lineage, because granulocytes and monocytes/macrophages, but not lymphocytes of peripheral blood, show a surface expression of CD13 antigen. However, we could recently show that cell‐cell contact of lymphocytes with endothelial cells, monocytes, and fibroblast‐like synoviocytes (SFCs) results in an increase of steady‐state APN/CD13 mRNA and a rapid expression of cell‐surface protein on the lymphocytes. In this study using the Dual‐Luciferase reporter assay, we demonstrate that interaction of the T‐cell line Jurkat with SFCs results in a higher activity of the APN/CD13 myeloid promoter in T cells. An enhancer located between the myeloid and epithelial APN/CD13 promoter increases the response of the promoter to the cell‐cell contact‐induced expression of APN/CD13 in lymphocytes. Adhesion of lymphocytes to extracellular matrix did not result in increased promoter activity. The lymphocytic promoter response induced by direct cell‐cell contact with SFCs is not affected by mutations of a proximal promoter element (nucleotides −48 to −35), which has a possible functional role in the basal APN/CD13 gene expression in lymphocytes. Upregulated peptidase‐promoter activity via cell‐cell contact shown in this study for the first time is discussed as a general mechanism in peptidase induction. J. Cell. Biochem. 80:115–123, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   
7.
BACKGROUND: Gene transfer to synovium in joints has been shown to be an effective approach for treating pathologies associated with rheumatoid arthritis (RA) and related joint disorders. However, the efficiency and duration of gene delivery has been limiting for successful gene therapy for arthritis. The transient gene expression that often accompanies non-viral gene delivery can be prolonged by integration of vector DNA into the host genome. We report a novel approach for non-viral gene therapy to joints that utilizes phage phiC31 integrase to bring about unidirectional genomic integration. METHODS: Rabbit and human synovial cells were co-transfected with a plasmid expressing phiC31 integrase and a plasmid containing the transgene and an attB site. Cells were cultured with or without G418 selection and the number of neo-resistant colonies or eGFP cells determined, respectively. Plasmid rescue, PCR query, and DNA sequence analysis were performed to reveal integration sites in the rabbit and human genomes. For in vivo studies, attB-reporter gene plasmids and a plasmid expressing phiC31 integrase were intra-articularly injected into rabbit knees. Joint sections were used for histological analysis of beta-gal expression, and synovial cells were isolated to measure luciferase expression. RESULTS: We demonstrated that co-transfection of a plasmid expressing phiC31 integrase with a plasmid containing the transgene and attB increased the frequency of transgene expression in rabbit synovial fibroblasts and primary human RA synoviocytes. Plasmid rescue and DNA sequence analysis of plasmid-chromosome junctions revealed integration at endogenous pseudo attP sequences in the rabbit genome, and PCR query detected integration at previously characterized integration sites in the human genome. Significantly higher levels of transgene expression were detected in vivo in rabbit knees after intra-articular injection of attB-reporter gene plasmids and a plasmid expressing phiC31 integrase. CONCLUSION: The ability of phiC31 integrase to facilitate genomic integration in synovial cells and increase transgene expression in the rabbit synovium suggests that, in combination with more efficient DNA delivery methods, this integrase system could be beneficial for treatment of rheumatoid arthritis and other joint disorders.  相似文献   
8.
9.
Rheumatoid arthritis (RA) is a chronic autoimmune disease with features of inflammatory cell infiltration, synovial cell invasive proliferation, and ultimately, irreversible joint destruction. It has been reported that the p53 pathway is involved in RA pathogenesis. MDM4/MDMX is a major negative regulator of p53. To determine whether MDM4 contributes to RA pathogenesis, MDM4 mRNA and protein expression were assessed in fibroblast-like synoviocytes (FLS) by real-time PCR, western blotting, and in synovial tissues by immunohistochemistry. Furthermore, MDM4 was knocked down and overexpressed by lentivirus-mediated expression, and the proliferative capacity of FLS was determined by MTS assay. We found that cultured FLS from RA and osteoarthritis (OA) patients exhibited higher levels of MDM4 mRNA and protein expression than those from trauma controls. MDM4 protein was highly expressed in the synovial lining and sublining cells from both types of arthritis. Finally, MDM4 knockdown inhibited the proliferation of RA FLS by enhancing functional p53 levels while MDM4 overexpression promoted the growth of RA FLS by inhibiting p53 effects. Taken together, our results suggest that the abundant expression of MDM4 in FLS may contribute to the hyperplasia phenotype of RA synovial tissues.  相似文献   
10.
The thioredoxin/thioredoxin reductase system is strongly induced in patients with rheumatoid arthritis (RA). We have investigated the impact on TR activity of doses of superoxide anion generated by the hypoxanthine (HX)/xanthine oxidase (XO) system and by hydrogen peroxide, H2O2, for various times and compared the findings with synoviocytes obtained from osteoarthritis (OA) patients. At baseline, TR activity in RA cells was significantly higher than in OA cells (2.31 ± 0.65 versus 0.74 ± 0.43 mUnit/mg protein, p < 0.01). HX/XO and H2O2 in RA cells decreased TR activity, which was found to be unchanged in OA cells. H2O2 and superoxide anion caused a time-dependent accumulation of oxidized TR and induced the formation of carbonyl groups in TR protein in RA cells rather than OA cells, and oxidized the selenocysteine of the active site. The oxidation in TR protein was irreversible in RA cells but not in OA cells. In conclusion, we report that the oxidative aggression generates modifications in the redox status of the active site of the TR and induces an alteration of the Trx/TR system, concomitant with those of the other antioxidant systems that could explain the causes of oxidative stress related to RA disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号