首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5926篇
  免费   256篇
  国内免费   733篇
  2023年   91篇
  2022年   130篇
  2021年   139篇
  2020年   167篇
  2019年   196篇
  2018年   191篇
  2017年   164篇
  2016年   194篇
  2015年   154篇
  2014年   331篇
  2013年   411篇
  2012年   291篇
  2011年   404篇
  2010年   266篇
  2009年   345篇
  2008年   357篇
  2007年   379篇
  2006年   268篇
  2005年   243篇
  2004年   196篇
  2003年   164篇
  2002年   128篇
  2001年   120篇
  2000年   100篇
  1999年   113篇
  1998年   84篇
  1997年   76篇
  1996年   69篇
  1995年   79篇
  1994年   79篇
  1993年   69篇
  1992年   80篇
  1991年   77篇
  1990年   58篇
  1989年   45篇
  1988年   38篇
  1987年   56篇
  1986年   27篇
  1985年   74篇
  1984年   63篇
  1983年   57篇
  1982年   48篇
  1981年   38篇
  1980年   48篇
  1979年   34篇
  1978年   36篇
  1977年   25篇
  1976年   33篇
  1975年   25篇
  1973年   21篇
排序方式: 共有6915条查询结果,搜索用时 15 毫秒
1.
In this contribution we investigate the impact of the forcing waveform on the productivity of a continuous bioreactor governed by an unstructured, nonlinear kinetic model. The (periodic) forcing is applied on the substrate concentration in the feed. To this end, some alternative waveforms commonly encountered in practice are evaluated and their performance is compared. An analytical/numerical approach is used. The preliminary analytical step is based on the π‐criterion that gives useful information for small amplitudes. The extension to larger amplitudes, when significant improvements are expected, is then performed through a continuation‐optimization procedure. It is found that the choice of the specific waveform has an impact on the performance of the process and there is no unique best forcing for any process condition, but its choice depends on the operating parameters and the forcing amplitude and frequency values. Further, the influence of the waveform functions on the wash‐out conditions are extensively examined. The analysis shows that all the waveforms examined in this work may lead to significant enlargement of the nontrivial regime with respect to a steady state operation. In particular, square‐wave forcing leads in practice to the extinction of the wash‐out conditions for any feed substrate concentration and for a well defined choice of the forcing parameters. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
2.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
3.
Genetically modified Saccharomyces cerevisiae strain (YPB-G) which secretes a bifunctional fusion protein that contains both Bacillus subtilis -amylase and Aspergillus awamori glucoamylase activities was used for the direct conversion of starch into ethanol. Starch was either supplied initially to different nutrient media or added instantaneously to the reactor at various discrete time instants (pulse feeding). Stoichiometric modeling was used to investigate the effects of initial substrate concentration and growth rate of the recombinant yeast culture on ethanol production. Reaction stoichiometries describing both the anabolism and catabolism of the microorganism were used as an input to flux balance analysis (FBA), the preferred metabolic modeling approach since the constructed stoichiometric network was underdetermined. Experiments for batch and fed-batch systems at different substrate concentrations were analyzed theoretically in terms of flux distributions using ethanol production rate as the maximization criteria. Calculated ethanol rates were in agreement with experimental measurements, suggesting that this recombinant microorganism is sufficiently evolved to optimize its ethanol production. The function of the main pathways of yeast metabolism (PPP, EMP, TCA) are discussed together with the node analyses of glucose-6-P and pyruvate branch points. Theoretical node analysis revealed that if the split ratio in G6P branch point is changed by genetic manipulations, the ethanol yield would be affected considerably.  相似文献   
4.
5.
Cultural adherent human mononuclear cells produce factor(s) which stimulate the release of calcium from new-born mouse calvaria in organ culture. This stimulation of bone resorption is accompanied by an inhibition of the incorporation of [3H]proline into collagen which is independent of increased prostaglandin production by the bone. When human osteoblast-like cells are treated with conditioned medium from human mononuclear cells, collagen accounts for a decreased proportion of the protein synthesised. This effect on matrix synthesis is not accompanied by an inhibitory action of the monocyte-conditioned medium preparations on net cell proliferation. In human osteoblast-like cell cultures, partially purified human interleukin 1 also inhibits the production of the bone-specific protein osteocalcin in a dose-dependent fashion. These observations are consistent with the hypothesis that products of human monocytes similar to, or identical with, human interleukin 1 may be important regulators of bone metabolism and may contribute to the bone loss seen in diseases such as chronic rheumatoid arthritis.  相似文献   
6.
Identifying protein–protein and other proximal interactions is central to dissecting signaling and regulatory processes in cells. BioID is a proximity-dependent biotinylation method that uses an “abortive” biotin ligase to detect proximal interactions in cells in a highly reproducible manner. Recent advancements in proximity-dependent biotinylation tools have improved efficiency and timing of labeling, allowing for measurement of interactions on a cellular timescale. However, issues of size, stability, and background labeling of these constructs persist. Here we modified the structure of BioID2, derived from Aquifex aeolicus BirA, to create a smaller, highly active, biotin ligase that we named MicroID2. Truncation of the C terrminus of BioID2 and addition of mutations to alleviate blockage of biotin/ATP binding at the active site of BioID2 resulted in a smaller and highly active construct with lower background labeling. Several additional point mutations improved the function of our modified MicroID2 construct compared with BioID2 and other biotin ligases, including TurboID and miniTurbo. MicroID2 is the smallest biotin ligase reported so far (180 amino acids [AAs] for MicroID2 versus 257 AAs for miniTurbo and 338 AAs for TurboID), yet it demonstrates only slightly less labeling activity than TurboID and outperforms miniTurbo. MicroID2 also had lower background labeling than TurboID. For experiments where precise temporal control of labeling is essential, we in addition developed a MicroID2 mutant, termed lbMicroID2 (low background MicroID2), that has lower labeling efficiency but significantly reduced biotin scavenging compared with BioID2. Finally, we demonstrate utility of MicroID2 in mass spectrometry experiments by localizing MicroID2 constructs to subcellular organelles and measuring proximal interactions.  相似文献   
7.
8.
《Fungal biology》2020,124(7):619-628
Mucor circinelloides is an opportunistic dimorphic pathogen, with the dimorphic process controlled in parts by fermentative and oxidative metabolisms, which lead to yeast or mycelial growth, respectively. Dimorphic transition is important for pathogenesis since the mycelium represents the virulent morphology. We previously reported that the deletion of arl1 or arl2 stimulate anaerobic germination in M. circinelloides, suggesting an augmented fermentative metabolism. In the present study, we demonstrate that the heterokaryon Δarl1(+)(−) and homokaryon Δarl2 strains contain low number of mitochondria, which possibly results in a dysfunctional oxidative metabolism, marked by a low oxygen consumption in glucose and poor growth in glycerol as the unique carbon source. This dysfunction is compensated for by an increase in the glycolysis and fermentation in aerobic conditions, demonstrating growth kinetics similar to that in the wild-type strain. Moreover, as a consequence a high fermentative activity, the Δarl1(+)(−) and Δarl2 strains possibly increased the yeast cell growth during low oxygen concentrations in presence of glucose.To the best of our knowledge, this is the first study to demonstrate the control of members of Arf family on the mitochondrial population in a Mucor species.  相似文献   
9.
H Slor 《Mutation research》1973,19(2):231-235
The carcinogen 7-bromomethylbenz(a)anthracene (BBA), which can bind strongly to DNA, induces unscheduled DNA synthesis (DNA repair) in normal lymphocytes but almost none in lymphocytes from patients with Xeroderma pigmentosum (XP), and inherited disease known to be defective in excision repair of ultraviolet-damaged DNA. We studied [3H]BBA's ability to bind to DNA of normal and XP lymphocytes, its influence on unscheduled DNA synthesis, and its removal from the DNA of both cell types. We found that 20–30% of the BBA is bound to macromolecules other than DNA and that its binding to DNA is essentially complete after 30 min. The induction of unscheduled DNA synthesis by the carcinogen in XP lymphocytes was approximately 10% of that induced in normal lymphocytes. While 15–20% of the BBA was removed from the DNA of normal cells 6 h after treatment, only 1–2% was removed from the DNA of XP cells. Thus, XP cells not only are defective in repairing ultraviolet-damaged DNA and excising thymine dimers but also fail to repair DNA damaged by certain carcinogens, and, most importantly, fail to remove the DNA-bound carcinogen, BBA.  相似文献   
10.
Fermentation systems are used to provide an optimal growth environment for many different types of cell cultures. The ability afforded by fermentors to carefully control temperature, pH, and dissolved oxygen concentrations in particular makes them essential to efficient large scale growth and expression of fermentation products. This video will briefly describe the advantages of the fermentor over the shake flask. It will also identify key components of a typical benchtop fermentation system and give basic instruction on setup of the vessel and calibration of its probes. The viewer will be familiarized with the sterilization process and shown how to inoculate the growth medium in the vessel with culture. Basic concepts of operation, sampling, and harvesting will also be demonstrated. Simple data analysis and system cleanup will also be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号