首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
The entomopathogenic nematodes Steinernema feltiae (Biosys strain #27) and Heterorhabditis heliothidis were evaluated for the larval control of a mushroom-infesting sciarid, Lycoriella mali, and for the effects of these nematodes on mushroom (Agaricus bisporus) production. In a series of small-scale mushroom crops, infective-stage H. heliothidis and S. feltiae were applied to the mushroom casing surface in the irrigation water or incorporated into the casing material at densities ranging from 28 to 1120 and 11 to 1120 nematodes cm-2 of casing surface respectively. The mortality of L. mali larvae ranged from 52 to 100% for H. heliothidis and 38 to 100% for S. feltiae. Both nematode species reduced mycelial coverage on the casing surface at primordia initiation. Neither mushroom strain (off-white or white hybrid) or method of application (incorporation into or irrigation onto the casing surface) altered the effect on mycelial coverage. The nematodes's negative effect on mycelial growth confounded the benefit of fly control. At high nematode densities (up to 1120 nematodes cm-2), damage-free mushroom yields for the first week of harvest were less than those from the untreated control. However, at lower nematode densities, at or below 140 cm-2, the nematodes had less effect on mushroom growth, and consequently, damage-free mushroom yields for the first week of harvest were frequently greater than those from the untreated control. In the absence of flies, the first-week mushroom yield generally declined with increasing nematode densities for both white and off-white mushroom hybrids. After 4 weeks of harvest, accumulated mushroom yields had nearly recovered from the earlier decline.  相似文献   
2.
The entomopathogenic nematodes, Steinernema felitae (=bibionis) and Heterorhabditis megidis, were encapsulated in calcium alginate and their efficacy was tested against immature houseflies. Aliquots of capsules (15 ml) containing either 1 000 000, 500 000, 250 000 or 125 000 nematodes were added to 70-ml portions of grassmeal diet containing either eggs of first, second or third instar larvae. After 2 days, the treatment with 1 000 000 encapsulated S. feltiae (=bibionis) had killed 94% of housefly eggs and 90% of first instar larvae. By day 6, both of these mortalities had increased significantly (P 0.005) to 100%. By day 2, in the same medium, 1 000 000 encapsulated H. megidis had killed 71.4% of eggs and 90% of first instar larvae. This increased significantly (P 0.01) by day 6, to 99.2% and 100% respectively. Another experiment was carried out where immature houseflies were placed in chicken manure. The emergence of houseflies as adults was used to measure the effect of the encapsulated nematodes. Depending on the numbers of nematodes and the original stage of the housefly, the treatment with encapsulated S. feltiae resulted in 55-96% reduction in adult housefly emergence, whereas treatment with encapsulated H. megidis resulted in 35-98% reduction in emergence. Finally, when encapsulated nematodes were presented as a bait to adult houseflies, little infectivity was observed.  相似文献   
3.
Two pot experiments, one in a glasshouse and the other in an outdoor sand plunge, were conducted to examine the influence of the entomopathogenic nematodes, Steinernema feltiae and S. carpocapsae , on the invasion and development of the potato cyst nematode, Globodera rostochiensis . Of a total of eight diVerent treatments with entomopathogenic nematodes in the glasshouse trial, three reduced the invasion of G. rostochiensis and one reduced the numbers of new cysts that were produced compared with controls. In the outdoor experiment, seven of the 12 treatments gave a reduction in invasion but none resulted in changes in the numbers of cysts found at plant senescence. In general, invasion of G. rostochiensis juveniles was reduced more eVectively by S. carpocapsae than by S. feltiae , and was greatest in the outdoor trial where larger inocula of entomopathogenic nematodes were used. Overall, the results indicated that use of S. feltiae and S. carpocapsae is unlikely to provide a viable control strategy for G. rostochiensis .  相似文献   
4.
Limited storage stability is a major obstacle to further expansion of the use of entomopathogenic nematodes for pest control. Progress has been made that Steinernema carpocapsae can now be stored under partial anhydrobiosis for up to 6 months at 25°C and 10 months at 5°C in a water-dispersible granular (WG) formulation. However, other species have been more difficult to store in the WG formulation due to migration of nematodes out of the granules and sensitivity of some species to desiccation directly at cold temperatures. As acclimation to cold induces trehalose accumulation (a major cryo- and desiccation protectant) in many invertebrates, it was hypothesized that cold preacclimation of entomopathogenic nematodes will enhance their survival in the WG formulation at cold temperatures. This hypothesis was tested using a temperate species Steinernema feltiae , a subtropical species S. carpocapsae , and a tropical species Steinernema riobrave possessing different thermal niche breadths and reproduction temperature optima. Cold acclimation of infective juveniles increased trehalose accumulation in all three species and the amount of trehalose accumulated was both temperature and species dependent. Trehalose content reached at its peak after 6 days at 5°C in S. feltiae (82.28 μg/mg dry weight), after 10 days at 10°C in S. carpocapsae (94.16 μg/mg dry weight) and after 6 days at 15°C in S. riobrave (47.58 μg/mg dry weight). Cold preacclimation at 5°C for 2 days enhanced desiccation survival of S. feltiae in 25% glycerol (osmotic desiccation) at both 5 and 25° and of S. carpocapsae and S. riobrave only at 5°C. Non-cold acclimated S. carpocapsae and S. riobrave were extremely sensitive to desiccation directly at 5°C in 25% glycerol, resulting in over 98% mortality within 6 days, but S. feltiae was more sensitive to desiccation at 25°C than at 5°C. Cold preacclimation increased survival of all the three species in the WG formulation at both 5 and 25°C. The survival of S. riobrave at 5°C in the WG formulation was positively correlated with the length of preacclimation period at 5°C (R 2 = 0.99) and with the amount of trehalose accumulated during cold preacclimation (R 2 = 0.81). These results support the hypothesis that cold preacclimation enhances desiccation survival of entomopathogenic nematodes at cold temperatures and the increased survival correlates well with the increased trehalose accumulation. Results also demonstrate that cold preacclimation can be used as a tool to enhance survival of nematodes in the formulations with reduced water activity.  相似文献   
5.
Entomopathogenic nematodes are often used in conjunction with other pest management tactics and the lack of compatibility information is a major impediment in further expansion of their use. We evaluated the effects of different formulations of neem and selected fungicides commonly used in greenhouses on Steinernema feltiae which is used for the control of fungus gnats. Neem as pure oil at the field recommended concentrations (5- 10 mL L -1 ) had no effect on the viability and virulence of S. feltiae up to 120 h incubation. However the neem formulation, Nimbecidine and neem oil when mixed with a bactericidal soap (commonly used as a surfactant with neem oil) caused 13- 25% mortality of S. feltiae. This toxic effect was entirely due to the soap that alone caused about 24% mortality. Neither neem oil, Nimbecidine or soap had any effect on nematode virulence. The fungicide cinnamaldehyde (Cinnamate) was highly toxic, resulting in 100% nematode mortality after 4 h of incubation, followed by hydrogen dioxide/peroxyacetic acid mixture (ZeroTol) that caused 100% mortality after 120 h of incubation. Another fungicide, azoxystrobin (Abound) caused no nematode mortality. This investigation concludes that neem and the fungicide azoxystrobin (Abound) can be safely tank mixed at the field recommended concentrations with the infective juveniles of S. feltiae for application, but cinnamaldehyde (Cinnamate) and hydrogen dioxide/peroxyacetic mixture (ZeroTol), are incompatible. Also the surfactants that are usually recommended as 'tank-mix' applications can be toxic to the nematodes and should therefore be evaluated for compatibility prior to use.  相似文献   
6.
Infectivity and biocontrol potential of entomopathogenic nematodes against winter moths (Operophtera brumata and O. fagata)pupating in the soil were examined in laboratory, semi-field and field conditions. A pilot experiment conducted in the field showed that Steinernema feltiae was completely ineffective against pupae of these moths in the soil. Subsequent laboratory tests revealed that none of the tested species (i.e. S. feltiae, S. affinae, S. carpocapsae, Heterorhabditis megidis and H. bacteriophora) could colonise the pupae, while mature larvae descending to the soil for pupation and prepupae were highly susceptible to nematode infection. No differences were observed between O. brumata and O. fagata in susceptibility to nematodes. In laboratory experiments H. megidis applied at 1.5×105infective juveniles (IJ) m-2infected almost 100% of insects exposed for 6 days in the soil. It was significantly more infective than H. bacteriophora (73-77%) and Steinernema species (29-50%). H. megidis was also highly effective in semi-field conditions when applied at an even lower dose, i.e. 105IJ m-2. After a 45-day experiment, only 3% of insects descending for pupation survived in the soil pre-treated with this species. This was significantly less than in soil with S. feltiae (43%) and control treated with water only (59%). Very high efficacy of H. megidis and a relatively easy method for its field application through ground spraying gives some promise for environmentally safe and successful biological control of winter moths during their pupation in the soil. The low application rate required and recycling in the host could be additional advantages for economic and long lasting protection of high value trees, particularly those in urban parks and forests.  相似文献   
7.
Steinernema feltiae Filipjev and S. carpocapsae Weiser (Nematoda: Steinernematidae) at rates of 1, 5 and 20 million m-2 in peat pots and at rates of 1, 2.5 and 5 million m-2 in rockwool cubes were tested against the shore fly Scatella tenuicosta Collin (Diptera: Ephydridae) by applying the nematodes either preventatively 2 days before or curatively 9 days after, or both 2 days before and 9 days after exposing the pots and cubes to flies. Based on cumulative fly numbers that emerged from peat pots sampled weekly for 3 weeks, all application strategies with 5 or 20 million nematodes net-m-2, irrespective of species, reduced fly numbers by 61-96% as compared to untreated controls. High temperatures in 1 week reduced control efficacy to 30-35% in some treatments. In rockwool, maximum control efficacies of 83-84% were achieved by both species in the second week in treatments that had received two applications at the rate of 5 million m-2, but these did not differ significantly from the 69-75% efficacies achieved with 2.5 million nematodes m-2. The cumulative control efficacy over 4 weeks was only 46% at maximum. The lower control efficacy in rockwool compared to peat was due to rapid disappearance of nematodes from rockwool.  相似文献   
8.
Penetration rate (the percentage of the initial infective juvenile inoculum that invades an insect host) was tested as an indicator of entomopathogenic nematode infectivity. Several host-parasite-substrate combinations were evaluated for penetration rate. Four steinernematids, Steinernema carpocapsae, S. glaseri, S. feltiae, S. riobravis and two strains of Heterorhabditis bacteriophora were tested in a contact bioassay against the wax moth, Galleria mellonella, the yellow meal worm, Tenebrio molitor, the beet armyworm, Spodoptera exigua, the black cutworm, Agrotis ipsilon, and the European corn borer, Ostrinia nubilalis. The insect larvae were confined individually in sand and filter paper arenas and exposed to 200 infective juveniles. After incubation, dead insects were dissected in order to count the nematodes penetrated. The data were analyzed for the effects of nematode strain and substrate on penetration rate. The bioassay substrate had a variable effect depending on the insect species. The nematode effect was highly significant for all insects tested. The penetration rate therefore allowed comparisons among nematode strains invading a host. Nematode ranking for infectivity differed according to the insect tested.  相似文献   
9.
The impact of entomopathogenic nematodes (EPN) on mortality of soil-dwelling stages of western flower thrips (WFT), Frankliniella occidentalis (Thysanoptera: Thripidae) with different insect stage combinations was studied in the laboratory and under semi-field conditions. In laboratory experiments, the efficacy of Steinernema feltiae strain Sylt (Rhabditida: Steinernematidae) at a concentration of 400 infective juveniles (IJs) cm -2 was tested against different proportions of soil-dwelling stages of WFT, i.e. late second instar larvae (L2), prepupae and pupae. Soil was used as the testing medium. S. feltiae significantly affected the mortality of all soil-dwelling life stages of WFT at all tested insect stage combinations. The proportion of late L2 in the population negatively correlated to EPN-induced mortality. WFT prepupa and pupa were similarly susceptible to S. feltiae and their proportion in the population did not affect the EPN-induced mortality under laboratory conditions. The highest mortality (80%) was recorded when the population consisted only of prepupae and/or pupae. In the semi-field study, the impact of S. feltiae , S. carpocapsae strain DD136 and Heterorhabditis bacteriophora strain HK3 (Rhabditida: Heterorhabditidae) ( H. bacteriophora ) at concentrations of 400 and 1000 IJs cm -2 was evaluated against WFT reared on green beans, Phaseolus vulgaris L., as host plant in pot experiments in a controlled climate chamber. All tested EPN strains at both dose rates significantly reduced the WFT populations. Up to 70% reduction of the WFT population was obtained at the higher EPN concentration.  相似文献   
10.
Five bioassays were compared for their usefulness to determine the virulence of four nematode strains. The objective of this study was to develop standard assays for particular nematode species. In all assays, the nematodes Steinernema feltiae (strain UK), S. riobravis, S. scapterisci Argentina and Heterorhabditis bacteriophora HP88 were exposed to Galleria mellonella larvae. All bioassays except the sand column assay were conducted in multi-well plastic dishes. In the penetration rate assay, the number of individual nematodes invading the insect was determined after a 48-h exposure to 200 infective juveniles (IJs). In the one-on-one assay, each larva was exposed to an individual nematode for 72 h before insect mortality was recorded. In the exposure time assay, insect mortality was recorded after exposure to 200 IJs for variable time periods. The dose-response assay involved exposing larvae to different nematode concentrations over the range 1-200 IJs/insect and recording mortality every 24 h for a 96-h period. In the sand columns assay, insects were placed in the bottom of a plastic cylinder filled with sand. Nematodes were applied on top of the sand and insect mortality was determined after IJs had migrated through the cylinder. The highest mortality level in the sand column assay was obtained with IJs of S. feltiae followed by H. bacteriophora; treatments with S. riobravis and S. scapterisci produced low levels of insect mortality. In the other four assays, S riobravis was the most virulent, followed by S. feltiae, H. bacteriophora and S. scapterisci. In the exposure time assay, rapid mortality was achieved when the insects were exposed to S. feltiae and S. riobravis. For these nematode species, a gradual increase in the number of individuals which penetrated into cadavers was recorded. Conversely, the number of nematodes in the cadavers of insects infected by H. bacteriophora and S. scapterisci remained low during the entire exposure period. In this assay, exposing the insects to these nematodes resulted in a gradual increase in mortality. In the dose-response assay, complete separation among nematode species was obtained only after 48 h of incubation at a concentration of 15 IJs/insect. LD and LD values were calculated from 50 90 dose-response assay data. However, these values did not indicate differences among the different nematode species. The present study demonstrated the variation in entomopathogenic nematode performance in different bioassays and supports the notion that one common bioassay cannot be used as a universal measure of virulence for all species and strains because nematodes differ in their behavior. Furthermore, particular assays should be used for different purposes. To select a specific population for use against a particular insect, assays that are more laborious but which simulate natural environmental conditions (e.g. the sand column assay) or invasion by the nematode (e.g. the penetration rate assay) should be considered. In cases where commercial production batches of the same nematode strains are compared, simple and fast assays are needed (e.g. the one-on-one and exposure time assays). Further studies are needed to determine the relationships between data obtained in each assay and nematode efficacy in the field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号