首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
Insecticidal and antifeeding activities against Plutella xylostella were observed using whole‐plant‐derived Perilla frutescens material. The active ingredient in P. frutescens was identified by spectroscopic analysis as the sesquiterpenoid α‐farnesene, which showed insecticidal activity against third‐instar larva of P. xylostella in a leaf‐dipping bioassay based on 24‐h LD50 values (LD50 = 53.7 ppm). The feeding inhibition rate of α‐farnesene was 82.98% against P. xylostella at 10 ppm, and the antifeeding responses were determined using an oscilloscope to detect electrophysiological responses. The electrophysiological responses of the medial styloconic sensillum (MSS) were approximately 7‐fold more sensitive at 100 ppm than those of the lateral styloconic sensillum (LSS). These results suggest that the insecticidal and antifeeding effect of α‐farnesene, which is a P. frutescens‐derived material, can be used as a potential control agent for P. xylostella.  相似文献   
2.
We observed that removing pantothenate (vitamin B5), a precursor to co-enzyme A, from the growth medium of Saccharomyces cerevisiae engineered to produce β-farnesene reduced the strain׳s farnesene flux by 70%, but increased its viability, growth rate and biomass yield. Conversely, the growth rate and biomass yield of wild-type yeast were reduced. Cultivation in media lacking pantothenate eliminates the growth advantage of low-producing mutants, leading to improved production upon scale-up to lab-scale bioreactor testing. An omics investigation revealed that when exogenous pantothenate levels are limited, acyl-CoA metabolites decrease, β-oxidation decreases from unexpectedly high levels in the farnesene producer, and sterol and fatty acid synthesis likely limits the growth rate of the wild-type strain. Thus pantothenate supplementation can be utilized as a “metabolic switch” for tuning the synthesis rates of molecules relying on CoA intermediates and aid the economic scale-up of strains producing acyl-CoA derived molecules to manufacturing facilities.  相似文献   
3.
The emissions of spruce grafts (Picea abies), caused by infestation of an acarid species of the genus Nalepella were investigated. Volatiles of three clones, both healthy and infested, with different susceptibility to the large pine weevil Hylobius abietis were collected by solid phase micro extraction (SPME) and analyzed by gas chromatograph coupled to mass-spectrometry (GC-MS). In addition, enantiomers of the main chiral compounds were separated by a two dimensional-gas chromatograph (2D-GC). In the characteristic flower-like fragrances emitted by the infested grafts large amounts of E-β-farnesene, E,E-α-farnesene, (−)-linalool, methyl salicylate and minute amounts of benzyl alcohol, E-anethole, methyl benzoate, neral and geranial were found. All together, these compounds could explain the characteristic scent emitted by the infested seedlings. Large differences in the emissions of E-β-farnesene, E,E-α-farnesene and methyl salicylate were found between but not within the clones. Handling editor: Heikki Hokkanen.  相似文献   
4.
Deploying collective antipredator behaviors during periods of increased predation risk is a major determinant of individual fitness for most animal groups. Pea aphids, Acyrthosiphon pisum, which live in aggregations of genetically identical individuals produced via asexual reproduction warn nearby conspecifics of pending attack by secreting a volatile alarm pheromone. This alarm pheromone allows clone‐mates to evade predation by walking away or dropping off the host plant. Here, we test how a single alarm pheromone emission influences colony structure and defensive behavior in this species. Relative to control colonies, groups exposed to alarm pheromone exhibited pronounced escape behavior where many individuals relocated to adjacent leaves on the host plant. Alarm pheromone reception, however, also had subtle instar‐specific effects: The proportion of 1st instars feeding nearest the leaf petiole decreased as these individuals moved to adjacent leaves, while the proportion of 2nd–3rd instars feeding nearest the leaf petiole remained constant. Fourth instars also dispersed to neighboring leaves after pheromone exposure. Lastly, alarm pheromone reception caused maternal aphids to alter their preferred feeding sites in a genotype‐specific manner: Maternal aphids of the green genotype fed further from the petiole, while maternal aphids of the pink genotype fed closer to the petiole. Together, our results suggest that aphid colony responses to alarm pheromone constitute a diversity of nuanced instar‐ and genotype‐specific effects. These behavioral responses can dramatically change the spatial organization of colonies and their collective defensive behavior.  相似文献   
5.
Four Old World species of Pheidole ants contain different mixtures of farnesene-type hydrocarbons in their poison apparatus, and the mixture is different between the minor and major workers within a species. A bishomofarnesene (C17H28) provides approximately half of the secretion of the Dufour glands of minor workers of Pheidole pallidula. (Z,E)-α-Farnesene constituted 96% of the Dufour secretion of major workers of P. pallidula, but only 20% of that of minors. The Dufour glands of minor workers of Pheidole sinaitica contain a mixture of farnesene homologues with (Z,E)-α-farnesene and the bishomofarnesene also found in P. pallidula predominant. The mixture in major workers was similar but had, in addition, a small amount of (E)-β-farnesene. The Dufour glands of Pheidole teneriffana minors contain chiefly the same bishomofarnesene found in P. pallidula and P. sinaitica while major workers contain (Z,E)-α-farnesene. Pheidole megacephala minor workers contained small amounts of eight farnesenes, while major workers contained essentially no farnesenes. The poison glands of minor workers of P. pallidula contain 3-ethyl-2,5-dimethylpyrazine. No pyrazine compounds were found in the major workers of P. pallidula or the minor workers of P. sinaitica. The poison glands of the major workers of P. sinaitica contained larger amounts of tetra-substituted pyrazines. No pyrazines were found in the poison reservoirs of major or minor workers of P. teneriffana or P. megacephala.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号