首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2005年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
2.
We purified a fraction that showed NAD+-linked methylglyoxal dehydrogenase activity, directly catalyzing methylglyoxal oxidation to pyruvate, which was significantly increased in glutathione-depleted Candida albicans. It also showed NADH-linked methylglyoxal-reducing activity. The fraction was identified as a NAD+-linked alcohol dehydrogenase (ADH1) through mass spectrometric analyses. In ADH1-disruptants of both the wild type and glutathione-depleted cells, the intracellular methylglyoxal concentration increased significantly; defects in growth, differentiation, and virulence were observed; and G2-phase arrest was induced.  相似文献   
3.
4.
The tricarboxylic acid cycle enzyme aconitase in yeast is a single translation product, which is dual targeted and distributed between the mitochondria and the cytosol by a unique mechanism involving reverse translocation. There is limited understanding regarding the precise mechanism of reverse translocation across the mitochondrial membranes. Here, we examined the contribution of the mature part of aconitase to its dual targeting. We created a set of aconitase mutants harboring two kinds of alterations: (1) point mutations or very small deletions in conserved sites and (2) systematic large deletions. These mutants were screened for their localization by a α-complementation assay, which revealed that the aconitase fourth domain that is at the C-terminus (amino acids 517-778) is required for aconitase distribution. Moreover, fusion of this C-terminal domain to mitochondria-targeted passenger proteins such as dihydrofolate reductase and orotidine-5′-phosphate decarboxylase, conferred dual localization on them. These results indicate that the aconitase C-terminal domain is both necessary and sufficient for dual targeting, thereby functioning as an “independent signal”. In addition, the same C-terminal domain was shown to be necessary for aconitase efficient posttranslational import into mitochondria.  相似文献   
5.
Cdc28 is the main cyclin-dependent kinase (CDK) directing the cell cycle in the budding yeast Saccharomyces cerevisiae. Besides cyclin binding, Cdc28 requires phosphorylation by the Cak1 kinase to achieve full activity. We have previously isolated carboxy-terminal cdc28CST mutants that are temperature sensitive and exhibit high chromosome instability. Both phenotypes are suppressed by high copy Cak1 in a manner that is independent of its catalytic activity and conversely, combination of cdc28CST and cak1 mutations results in synthetic lethality. Altogether, these results suggest that for the Cdc28 complexes to remain stable and active, an interaction with Cak1 is needed via the carboxyl terminus of Cdc28. We report two-hybrid assay data that support this model, and results that indicate that actively growing yeast cells require an optimum Cdc28:Cak1 ratio. While Cak1 is constitutively active and expressed, dividing cells tightly regulate Cak1 protein levels to ensure presence of adequate levels of Cdc28 CDK activity.  相似文献   
6.
Resistance to antimalarial antifolates necessitates a search for new antimetabolites targeting other enzymes of the folate metabolic pathway. In this study, 5-fluoroorotate (FOA), reported to be an inhibitor of thymidylate synthase, was assayed against Plasmodium berghei NK 65 in mice, with(out) an oral uridine supplement. FOA (2.5 and 5.0 mg/kg bw.) was tested alone, or in a double and triple combination with a fixed oral dose of 1.25 and 2.5 mg/kg of pyrimethamine (PYR); 1.0 and 2.0 mg/kg of dapsone (DAP); 1.0 and 2.0 mg/kg of artesunate (ART). FOA achieved high suppression which ranged from 95.7% to aparasitaemic, activity that was dose-dependent. At the highest dosages used, FOA-PYR and FOA-DAP-ART combinations were synergistic with 100% cure rate, while FOA-PYR-ART was antagonistic. Drugs in a synergistic combination may exert less resistance selection pressure, thus FOA-PYR and FOA-DAP-ART warrant further evaluation with an ultimate object of possible clinical use against drug-resistant malaria.  相似文献   
7.
Here, we report the identification of yeast 15-kD Tim15/Zim17, a new member of mitochondrial Hsp70 (mtHsp70)-associated motor and chaperone (MMC) proteins. The 15-kD MMC protein is a peripheral inner membrane protein with a zinc-finger motif. Depletion of the 15-kD protein led to impaired import of presequence-containing proteins into the matrix in vivo and in vitro. Overexpression of the 15-kD protein rescued the functional defects of mtHsp70 in ssc1-3 cells, and a fusion protein containing the 15-kD protein physically interacts with purified mtHsp70. Tim15/Zim17 therefore cooperates with mtHsp70 to facilitate import of presequence-containing proteins into the matrix.  相似文献   
8.
9.
In recent years, the genus Clostridium has risen to the forefront of both medical biotechnology and industrial biotechnology owing to its potential in applications as diverse as anticancer therapy and production of commodity chemicals and biofuels. The prevalence of hyper-virulent strains of C. difficile within medical institutions has also led to a global epidemic that demands a more thorough understanding of clostridial genetics, physiology, and pathogenicity. Unfortunately, Clostridium suffers from a lack of sophisticated genetic tools and techniques which has hindered the biotechnological exploitation of this important bacterial genus. This review provides a comprehensive summary of biotechnological progress made in clostridial genetic tool development, while also aiming to serve as a technical guide for the advancement of underdeveloped clostridial strains, including recalcitrant species, novel environmental samples, and non-type strains. Relevant strain engineering techniques, from genome sequencing and establishment of a gene transfer methodology through to deployment of advanced genome editing procedures, are discussed in detail to provide a blueprint for future clostridial strain construction endeavors. It is expected that a more thorough and rounded-out genetic toolkit available for use in the clostridia will bring about the construction of superior bioprocessing strains and a more complete understanding of clostridial genetics, physiology, and pathogenicity.  相似文献   
10.
Farnesyl diphosphate (FPP) synthase (FPS: EC.2.5.1.1, EC.2.5.1.10) catalyzes the formation of FPP from isopentenyl diphosphate and dimethylallyl diphosphate via two successive condensation reactions. A cDNA designated CrFPS, encoding a protein showing high similarities with trans-type short FPS isoforms, was isolated from the Madagascar periwinkle (Catharanthus roseus). This cDNA was shown to functionally complement the lethal FPS deletion mutant in the yeast Saccharomyces cerevisiae. At the subcellular level, while short FPS isoforms are usually described as cytosolic proteins, we showed, using transient transformations of C. roseus cells with yellow fluorescent protein-fused constructs, that CrFPS is targeted to peroxisomes. This finding is discussed in relation to the subcellular distribution of FPS isoforms in plants and animals and opens new perspectives towards the understanding of isoprenoid biosynthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号