首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   15篇
  国内免费   2篇
  2024年   1篇
  2022年   4篇
  2021年   2篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   9篇
  2016年   4篇
  2015年   4篇
  2014年   12篇
  2013年   18篇
  2012年   8篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   6篇
  2007年   11篇
  2006年   12篇
  2005年   8篇
  2004年   2篇
  2003年   6篇
  2002年   8篇
  2001年   2篇
  2000年   6篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1992年   1篇
  1991年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
1.
Summary The ability of time-averaged restrained molecular dynamics (TARMD) to escape local low-energy conformations and explore conformational space is compared with conventional simulated-annealing methods. Practical suggestions are offered for performing TARMD calculations with ligand-receptor systems, and are illustrated for the complex of the immunosuppressant FK506 bound to Q50R,A95H,K98I triple mutant FKBP-13. The structure of 13C-labeled FK506 bound to triple-mutant FKBP-13 was determined using a set of 87 NOE distance restraints derived from HSQC-NOESY experiments. TARMD was found to be superior to conventional simulated-annealing methods, and produced structures that were conformationally similar to FK506 bound to wild-type FKBP-12. The individual and combined effects of varying the NOE restraint force constant, using an explicit model for the protein binding pocket, and starting the calculations from different ligand conformations were explored in detail.Abbreviations DG distance geometry - dmFKBP-12 double-mutant (R42K,H87V) FKBP-12 - FKBP-12 FK506-binding protein (12 kDa) - FKBP-13 FK506-binding protein (13 kDa) - HSQC heteronuclear single-quantum coherence - KNOE force constant (penalty) for NOE-derived distance restraints - MD molecular dynamics - NOE nuclear Overhauser effect - SA simulated annealing - TARMD molecular dynamics with time-averaged restraints - tmFKBP-13 triple-mutant (Q50R,A95H,K98I) FKBP-13 - wtFKBP-12 wild-type FKBP-12  相似文献   
2.
Summary New H2O-selective homonuclear and heteronuclear 2D NMR experiments have been designed for the observation of protein hydration (PHOGSY, Protein Hydration Observed by Gradient Spectroscop Y). These experiments utilize selective excitation of the H2O resonance and pulsed field gradients for coherence selection and efficient H2O suppression. The method allows for a rapid and sensitive detection of H2O molecules in labelled and unlabelled proteins. In addition it opens a way to measure the residence time of water bound to proteins. Its application to uniformly 15N-labelled FKBP-12 (FK-506 binding protein) is demonstrated.  相似文献   
3.
Reactivation of the androgen receptor signaling pathway in the emasculated environment is the main reason for the occurrence of castration-resistant prostate cancer (CRPC). The immunophilin FKBP51, as a co-chaperone protein, together with Hsp90 help the correct folding of AR. Rapamycin is a known small-molecule inhibitor of FKBP51, but its effect on the FKBP51/AR signaling pathway is not clear. In this study, the interaction mechanism between FKBP51 and rapamycin was investigated using steady-state fluorescence quenching, X-ray crystallization, MTT assay, and qRT-PCR. Steady-state fluorescence quenching assay showed that rapamycin could interact with FKBP51. The crystal of the rapamycin-FKBP51 complex indicated that rapamycin occupies the hydrophobic binding pocket of FK1 domain which is vital for AR activity. The residues involving rapamycin binding are mainly hydrophobic and may overlap with the AR interaction site. Further assays showed that rapamycin could inhibit the androgen-dependent growth of human prostate cancer cells by down-regulating the expression levels of AR activated downstream genes. Taken together, our study demonstrates that rapamycin suppresses AR signaling pathway by interfering with the interaction between AR and FKBP51. The results of this study not only can provide useful information about the interaction mechanism between rapamycin and FKBP51, but also can provide new clues for the treatment of prostate cancer and castration-resistant prostate cancer.  相似文献   
4.
Abstract

The immunophilins are an important group of regulatory molecules in the immune system. FKBP5, expressed throughout mammals and in fish and birds, functions in both physiological and pathogenic pathways, including innate immunity and steroid-based diseases. In this study, we cloned the first porcine FKBP5 from Rongchang pig by the rapid amplification of cDNA ends technique. The full-length cDNA is 4097?bp, with an open reading frame of 1371?bp that codes for a 457-aa protein. Western blotting detected the porcine FKBP5 protein at highest levels in thymus, followed by spleen and lung. Immunohistochemistry detected the porcine FKBP5 protein in lymphocytes and granulocytes of the blood, and flow cytometry identified greater expression in unactivated (vs. activated) T lymphocytes. Finally, the expression level of porcine FKBP5 in the granulocytes was found to decline significantly from the time of birth to one-year-old. These collective data suggest that the newly identified porcine FKBP5 may function in activation of T cells in pig and in innate immunity in the newborn pig in particular.  相似文献   
5.
FKBP12 encodes a prolyl isomerase and highly conserved in eukaryotic species. In yeasts and animals, FKBP12 can interact with rapamycin and FK506 to form rapamycin-FKBP12 and FK506-FKBP12 complex, respectively. In higher plants, FKBP12 protein lost its function to bind rapamycin and FK506. Early studies showed that yeast and human FKBP12 protein can restore the rapamycin sensitivity in Arabidopsis, but the used concentration is 100–1000 folds higher than that in yeast and animals. High concentration of drugs would increase the cost and cause the potential secondary effects on plant growth and development. Here we further discovered that BP12 plants generated in our previous study are hypersensitive to rapamycin at the concentration as low as that is effective in yeast and animals. It is surprising to observe that WT and BP12 plants are not sensitive to FK506 in normal growth condition. These findings advance the current understanding of rapamycin-TOR signaling in plants.  相似文献   
6.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
7.
目的通过FKBP52基因敲除小鼠模型探索FKBP52在小鼠前列腺发育过程中的作用。方法分别对胚胎第17.5天、新生的和出生后3周的野生型和FKBP52基因敲除小鼠的前列腺进行切片HE染色,观察不同发育时期里野生型和FKBP52基因敲除小鼠前列腺发育的异同。结果(1)小鼠前列腺发育的起始不依赖于FKBP52基因的参与;(2)随着胚胎的发育,FKBP52在雄鼠前列腺发育中的作用逐渐显现出来,即FKBP52的缺失会导致前列腺叶发育受阻,最终不能形成成熟的前列腺。结论FKBP52在小鼠前列腺的发育过程中具有重要作用,它不参与前列腺的发育起始过程,但其缺失会导致前列腺发育受阻,即不能形成成熟的前列腺。  相似文献   
8.
The FK506-binding protein 38 (FKBP38) is a pro-apoptotic regulator of Bcl-2 in neuroblastoma cells. Hsp90 inhibits the pro-apoptotic FKBP38/CaM/Ca(2+) complex and thus prevents interactions between FKBP38 and Bcl-2. Here we show that Hsp90 increases cell survival rates of neuroblastoma cells after apoptosis induction. Depletion of FKBP38 by short interference RNA significantly decreased the anti-apoptotic effect of Hsp90 expression. In addition, the influence of high cellular Hsp90 levels was only observed in post-stimulation apoptosis that is sensitive to selective FKBP38 active site inhibition. Similar anti-apoptotic effects in neuroblastoma cells were observed after stimulation of endogenous Hsp90 expression. Hence, the inhibition of FKBP38 by Hsp90 participates in programmed cell death control of neuroblastoma cells.  相似文献   
9.
Here we report the solution structure of an archaeal FK506-binding protein (FKBP) from a thermophilic archaeum, Methanococcus thermolithotrophicus (MtFKBP17), which has peptidyl prolyl cis-trans isomerase (PPIase) and chaperone-like activities, to reveal the structural basis for the dual function. In addition to a typical PPIase domain, a newly identified domain is formed in the flap loop by a 48-residue insert that is required for the chaperone-like activity. The new domain, called IF domain (the Insert in the Flap), is a novel-folding motif and exposes a hydrophobic surface, which we consider to play an important role in the chaperone-like activity.  相似文献   
10.
Calcineurin (CN) is a Ca(2+)/calmodulin-dependent serine/threonine protein phosphatase and is involved in many physiological processes such as T-cell activation and cardiac hypertrophy. The crystal structures of CN and its complexes with FKBP12-FK506 and cyclophilin-cyclosporin showed that the two structurally unrelated immunophilins-immunosuppressants bind to a common composite surface made up of the residues from both catalytic subunit and regulatory subunit of CN. The recognition of the immunophilins and immunosuppressive drugs is achieved by common but few distinct CN residues. However, the binding pattern of FKBP12-FK506 such as hydrogen bonding is significantly different from that of CyPA-CsA. This common but distinct recognition may indicate capacity of the composition surface for binding of other inhibitory proteins. The recognition site and the active site are adjacent and form an "L" shaped cleft. This implies that the immunophilin recognition site may also serve as a recognition site to define the narrow substrate specificity of calcineurin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号