首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   12篇
  国内免费   2篇
  2023年   2篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   7篇
  2018年   3篇
  2017年   11篇
  2016年   6篇
  2015年   3篇
  2014年   11篇
  2013年   11篇
  2012年   22篇
  2011年   19篇
  2010年   19篇
  2009年   27篇
  2008年   23篇
  2007年   34篇
  2006年   28篇
  2005年   24篇
  2004年   23篇
  2003年   20篇
  2002年   12篇
  2001年   7篇
  2000年   11篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   7篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有402条查询结果,搜索用时 15 毫秒
1.
2.
Summary Analysis of the taxonomic composition, diversity and guild structure of five “typical” reef and mud mound communities ranging in age from Late Devonian-Early Carboniferous indicates that each of these aspects of community organization changed dramatically in relation to three extinction events. These events include a major or mass extinction at the end of the Frasnian; reef communities were also effected by less drastic end-Givetian and mid-late Famennian extinctions of reef-building higher taxa. Peak Paleozoic generic diversities for reef-building stromatoporoids and rugose corals occurred in the Eifelian-Givetian; reef-building calcareous algal taxa were longranging with peak diversity in the Devonian. These three higher taxa dominated all reef-building guilds (Constructor, Binder, Baffler) in the Frasnian and formed fossil reef communities with balanced guild structures. The extinction of nearly all reef-building stromatoporoids and rugose corals at the end of the Frasnian and the survival of nearly all calcareous algac produced mid-late Famennian reef communities dominated by the Binder Guild. Despite the survival of most calcareous algae and tabulate corals, the mid-late Famennian extinction of all remaining Paleozoic stromatoporoids and nearly all shelf-dwelling Rugosa brought the already diminished Devonian reef-building to a halt. These Devonian extinctions differ from mass extinctions by the absence of a statistically significant drop in taxonomic diversity and by their successional and cumulative effects on reef communities. Tournaisian mud mounds contain communities markedly different from the frame-building communities in Late Devonian and Visean reefs. Mound-building biotas consist of an unusual association dominated by erect, weakly skeletonized members of the Baffler Guild (chiefly fenestrate Bryozoa; Pelmatozoa) and laterally expanded, mud-binding algae/stromatolites and reptant Bryozoa. The initial recovery to reefs with skeletal frameworks in the Visean was largely due to the re-appearance of new species of abundant colonial rugose corals (Constructor Guild) and fenestrate Bryozoa. This Frasnian-Visean evolution in the taxonomic composition and structure of the reef-building guilds is also expressed by abrupt changes in biofacies and petrology of the reef limestones they produced. Thus, “typical” Frasnian reef limestones with balanced guild structures are framestones-boundstones-bafflestones, Famennian reefs are predominantly boundstones, Tournaisian mud mounds are bafflestones and Visean reefs are bafflestones-framestones.  相似文献   
3.
The great increase in the number of phylogenetic studies of a wide variety of organisms in recent decades has focused considerable attention on the balance of phylogenetic trees—the degree to which sister clades within a tree tend to be of equal size—for at least two reasons: (1) the degree of balance of a tree may affect the accuracy of estimates of it; (2) the degree of balance, or imbalance, of a tree may reveal something about the macroevolutionary processes that produced it. In particular, variation among lineages in rates of speciation or extinction is expected to produce trees that are less balanced than those that result from phylogenetic evolution in which each extant species of a group has the same probability of speciation or extinction. Several coefficients for measuring the balance or imbalance of phylogenetic trees have been proposed. I focused on Colless's coefficient of imbalance (7) for its mathematical tractability and ease of interpretation. Earlier work on this statistic produced exact methods only for calculating the expected value. In those studies, the variance and confidence limits, which are necessary for testing the departure of observed values of I from the expected, were estimated by Monte Carlo simulation. I developed recursion equations that allow exact calculation of the mean, variance, skewness, and complete probability distribution of I for two different probability-generating models for bifurcating tree shapes. The Equal-Rates Markov (ERM) model assumes that trees grow by the random speciation and extinction of extant species, with all species that are extant at a given time having the same probability of speciation or extinction. The Equal Probability (EP) model assumes that all possible labeled trees for a given number of terminal taxa have the same probability of occurring. Examples illustrate how these theoretically derived probabilities and parameters may be used to test whether the evolution of a monophyletic group or set of monophyletic groups has proceeded according to a Markov model with equal rates of speciation and extinction among species, that is, whether there has been significant variation among lineages in expected rates of speciation or extinction.  相似文献   
4.
We extend our earlier work on the role of deleterious mutations in the extinction of obligately asexual populations. First, we develop analytical models for mutation accumulation that obviate the need for time-consuming computer simulations in certain ranges of the parameter space. When the number of mutations entering the population each generation is fairly high, the number of mutations per individual and the mean time to extinction can be predicted using classical approaches in quantitative genetics. However, when the mutation rate is very low, a fixation-probability approach is quite effective. Second, we show that an intermediate selection coefficient (s) minimizes the time to extinction. The critical value of s can be quite low, and we discuss the evolutionary implications of this, showing that increased sensitivity to mutation and loss of capacity for DNA repair can be selectively advantageous in asexual organisms. Finally, we consider the consequences of the mutational meltdown for the extinction of mitochondrial lineages in sexual species.  相似文献   
5.
A new selectively neutral mutation occurs in a multilocus genetic background that has achieved a stable equilibrium at which there is a linkage disequilibrium. Perturbation techniques are applied to an extension of the branching process formulation of Fisher in order to address the question of extinction probabilities. We show that under appropriate conditions the probability of extinction of the new mutant is increased by the existence of linkage disequilibrium in the genetic background.Research supported in part by NIH grant GM 28016  相似文献   
6.
Although it is widely acknowledged that the gradual accumulation of mildly deleterious mutations is an important source of extinction for asexual populations, it is generally assumed that this process is of little relevance to sexual species. Here we present results, based on computer simulations and supported by analytical approximations, that indicate that mutation accumulation in small, random-mating monoecious populations can lead to mean extinction times less than a few hundred to a few thousand generations. Unlike the situation in obligate asexuals in which the mean time to extinction (t?e) increases more slowly than linearly with the population carrying capacity (K), t?e increases approximately exponentially with K in outcrossing sexual populations. The mean time to extinction for obligately selfing populations is shown to be equivalent to that for asexual populations of the same size, but with half the mutation rate and twice the mutational effect; this suggests that obligate selfing, like obligate asexuality, is inviable as a long-term reproductive strategy. Under all mating systems, the mean time to extinction increases relatively slowly with the logarithm of fecundity, and mutations with intermediate effects (similar to those observed empirically) cause the greatest risk of extinction. Because our analyses ignore sources of demographic and environmental stochasticity, which have synergistic effects that exacerbate the accumulation of deleterious mutations, our results should yield liberal upper bounds to the mean time to extinction caused by mutational degradation. Thus, deleterious mutation accumulation cannot be ruled out generally as a significant source of extinction vulnerability in small sexual populations or as a selective force influencing mating-system evolution.  相似文献   
7.
We explore extinction rates using a spatially arranged set of subpopulations obeying Ricker dynamics. The population system is subjected to dispersal of individuals among the subpopulations as well as to local and global disturbances. We observe a tight positive correlation between global extinction rate and the level of synchrony in dynamics among thesubpopulations. Global disturbances and to a lesser extent, migration, are capable of synchronizing the temporal dynamics of the subpopulations over a rather wide span of the population growth rate r. Local noise decreases synchrony, as does increasing distance among the subpopulations. Synchrony also levels off with increasing r: in the chaotic region, subpopulations almost invariably behave asynchronously. We conclude that it is asynchrony that reduces the probability of global extinctions, not chaos as such: chaos is a special case only. The relationship between global extinction rate, synchronous dynamics and population growth rate is robust to changes in dispersal rates and ranges.  相似文献   
8.
Synopsis The interaction of fluctuating water level and the Long Point topography is discussed with regard to the formation of lake-shore lagoons and their subsequent invasion by fishes. The species composition of fish communities in these lagoons was determined by 12 collections from lagoons (23 m2 to 25 ha) which yielded 33 fish species. The relationship of the number of fish species to lagoon area was lognormal; that is, with increasing lagoon area the number of species rose rapidly at first but soon decreased sharply, probably limited by the number of species capable of surviving in the habitat. The marked effect of area on species number in small lagoons is considered in the context of a hypothetical seasonal pattern of occasional invasion and continuous extinction.A sequence of reproductive guilds was found. In beach lagoons psammophils and lithophils were dominant. In a large vegetated lagoon in the interior phytophils and speleophils were dominant. This sequence was paralleled by an increase in the proportion of guarding and nesting species in the communities. The sequence was disrupted in the small interior lagoons where adaptations for survival were more important than reproductive strategy.  相似文献   
9.
The time evolution of slowly evolving discrete dynamical systems x i + 1 = T(r i ,x i ), defined on an interval [0, L], where a parameter r ichanges slowly with respect to i is considered. For certain transformations T, once r i reaches a critical value the system faces a non-zero probability of extinction because some x j [0, L]. Recent ergodic theory results of Ruelle, Pianigiani, and Lasota and Yorke are used to derive a simple expression for the probability of survival of these systems. The extinction process is illustrated with two examples. One is the quadratic map, T(r, x) = rx(1 – x), and the second is a simple model for the growth of a cellular population. The survival statistics for chronic myelogenous leukemia patients are discussed in light of these extinction processes. Two other dynamical processes of biological importance, to which our results are applicable, are mentioned.  相似文献   
10.
《Palaeoworld》2021,30(4):593-601
Fires are an integral part of modern and ancient ecosystems, serving as friends for renewal or foes for complete destruction and extinction. Indicators of palaeowildfire were so far absent from the Lower Triassic. Lack of plants in the Early Triassic due to the end-Permian mass extinction event and low atmospheric oxygen levels were proposed as the major reasons for the scarcity of wildfires. We present macroscopic charcoals from the Olenekian (Lower Triassic) in northwestern China, indicating probable ground/smoldering fires occurred on landscapes in mid-latitudes of northeastern Pangaea. Atmospheric oxygen concentration during the Olenekian would have been above 18.5%. These findings demonstrate that wildfires continued to be a source of disturbance of terrestrial ecosystems in Bogda Mountains after the end-Permian marine biotic crisis. There were adequate supplies of fuels and oxygen during this critical time period in the Earth history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号