首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2008年   1篇
  1999年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The grand game of metazoan phylogeny: rules and strategies   总被引:4,自引:0,他引:4  
Many cladistic analyses of animal phylogeny have been published by authors arguing that their results are well supported. Comparison of these analyses indicates that there can be as yet no general consensus about the evolution of the animal phyla. We show that the various cladistic studies published to date differ significantly in methods of character selection, character coding, scoring and weighting, ground-pattern reconstructions, and taxa selection. These methodological differences are seldom made explicit, which hinders comparison of different studies and makes it impossible to assess a particular phylogeny outside its own scope. The effects of these methodological differences must be considered before we can hope to reach a morphological reference framework needed for effective comparison and combination with the evidence obtained from molecular and developmental genetic studies.  相似文献   
2.
Phylogenetic position of Nemertea derived from phylogenomic data   总被引:1,自引:0,他引:1  
Nemertea and Platyhelminthes have traditionally been grouped together because they possess a so-called acoelomate organization, but lateral vessels and rhynchocoel of nemerteans have been regarded as coelomic cavities. Additionally, both taxa show spiral cleavage patterns prompting the placement of Nemertea as sister to coelomate Protostomia, that is, either to Neotrochozoa (Mollusca and Annelida) or to Teloblastica (Neotrochozoa plus Arthropoda). Some workers maintain a sister group relationship of Nemertea and Platyhelminthes as Parenchymia because of an assumed homology of G?tte's and Müller's larvae of polyclad Platyhelminthes and the pilidium larvae of heteronemerteans. So far, molecular data were only able to significantly reject a sister group relationship to Teloblastica. Although phylogenomic data are available for Platyhelminthes, Annelida, Mollusca, and Arthropoda, they are lacking for Nemertea. Herein, we present the first analysis specifically addressing nemertean phylogenetic position using phylogenomic data. More specifically, we collected expressed sequence tag data from Lineus viridis (O.F. Müller, 1774) and combined it with available data to produce a data set of 9,377 amino acid positions from 60 ribosomal proteins. Maximum likelihood analyses and Bayesian inferences place Nemertea in a clade together with Annelida and Mollusca. Furthermore, hypothesis testing significantly rejected a sister group relationship to either Platyhelminthes or Teloblastica. The Coelomata hypothesis, which groups coelomate taxa together to the exclusion of acoelomate and pseudocoelomate taxa, is not congruent with our results. Thus, the supposed acoelomate organization evolved independently in Nemertea and Platyhelminthes. In Nemertea, evolution of acoely is most likely due to a secondary reduction of the coelom as it is found in certain species of Mollusca and Annelida. Though looking very similar, the G?tte's and Müller's larvae of polyclad Platyhelminthes are not homologous to the pilidium larvae of heteronemerteans. Finally, the convergent evolution of segmentation in Annelida and Arthropoda is further substantiated.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号