首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   0篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   8篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2004年   5篇
  2003年   4篇
  2002年   2篇
  1999年   3篇
  1996年   2篇
  1994年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1982年   2篇
  1973年   2篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
1.
Ribonuclease P: the diversity of a ubiquitous RNA processing enzyme   总被引:8,自引:0,他引:8  
Ribonuclease P is the endonuclease required for generating the mature tRNA 5'-end. The ribonucleoprotein character of this enzyme has now been proven in most organisms and organelles. Exceptions, however, are still the chloroplasts, plant nuclei and animal mitochondria where no associated RNAs have been detected to date. In contrast to the known RNA subunits, which are fairly well-conserved in size and structure among diverse phylogenetic groups, the protein contribution to the holoenzyme is highly variable in size and number of the individual components. The structure of the bacterial protein component has recently been solved. In contrast, the spatial arrangement of the multiple subunits in eukaryotic enzymes is still enigmatic. Substrate requirements of the enzymes or their catalytic RNA subunits are equally diverse, ranging from simple single domain mimics to an almost intact three-dimensional structure of the pre-tRNA substrate. As an example for an intermediate in the enzyme evolution, ribonuclease P from the Cyanophora paradoxa cyanelle will be discussed in more detail. This enzyme is unique, as it combines cyanobacterial and eukaryotic features in its function, subunit composition and holoenzyme topology.  相似文献   
2.
The pressure response of two eukaryotic protein synthesizing systems has been characterized. The rabbit reticulocyte system has been tested, both in vivo and in vitro, using endogenous polysomes and polyuridylic acid (poly U). In addition, the poly U-directed polyphenylalanine synthesizing system obtained from wheat germ was utilized. The effect of pressure on eukaryotic protein synthesis has been found to be basically similar to that observed in prokaryotic systems, although the response of the eukaryotic protein synthesizing system is somewhat more complex signifying a greater influence of overlapping reactions. Magnesium was found to affect eukaryotic systems in much the same way as has been reported for prokaryotic systems, i.e., increasing the Mg2+ concentration in a protein synthesizing system increases the barotolerance exhibited by that system. Under conditions of high Mg2+ concentration, however, extreme (up to 160%) stimulation of protein synthesis at lower pressure levels was observed in the eukaryotic systems. Such high stimulation is not apparent in prokaryotic systems. The poly U-directed wheat germ system exhibited the most barotolerant polypeptide synthesis ever seen in our laboratory. This extreme barotolerance was only slightly decreased when the system was tested at reduced concentrations of magnesium.  相似文献   
3.
4.
Amino acid sequence alignments of orthologous ribosomal proteins found in Bacteria, Archaea, and Eukaryota display, relative to one another, an unusual segment or block structure, with major evolutionary implications. Within each of the prokaryotic phylodomains the sequences exhibit substantial similarity, but cross-domain alignments break up into (a) universal blocks (conserved in both phylodomains), (b) bacterial blocks (unalignable with any archaeal counterparts), and (c) archaeal blocks (unalignable with any bacterial counterparts). Sequences of those eukaryotic cytoplasmic riboproteins that have orthologs in both Bacteria and Archaea, exclusively match the archaeal block structure. The distinct blocks do not correlate consistently with any identifiable functional or structural feature including RNA and protein contacts. This phylodomain-specific block pattern also exists in a number of other proteins associated with protein synthesis, but not among enzymes of intermediary metabolism. While the universal blocks imply that modern Bacteria and Archaea (as defined by their translational machinery) clearly have had a common ancestor, the phylodomain-specific blocks imply that these two groups derive from single, phylodomain-specific types that came into existence at some point long after that common ancestor. The simplest explanation for this pattern would be a major evolutionary bottleneck, or other scenario that drastically limited the progenitors of modern prokaryotic diversity at a time considerably after the evolution of a fully functional translation apparatus. The vast range of habitats and metabolisms that prokaryotes occupy today would thus reflect divergent evolution after such a restricting event. Interestingly, phylogenetic analysis places the origin of eukaryotes at about the same time and shows a closer relationship of the eukaryotic ribosome-associated proteins to crenarchaeal rather than euryarchaeal counterparts.  相似文献   
5.
Most eukaryote molecular phylogenies have been based on small-subunit ribosomal RNA as its database includes the most species, but serious problems have been encountered that can make these trees misleading. More recent studies using concatenated protein sequences have increased the data per organism, reducing misleading signals from a single sequence, but taxon sampling is limited. To increase the database of protein-coding genes we sequenced the cytosolic form of heat-shock protein Hsp90 from a broad variety of previously unsampled eukaryote groups: protozoan flagellates (phyla Choanozoa, Apusozoa, Cercozoa) and all three groups of chromists (Cryptophyta, Heterokonta, Haptophyta). Gamma-corrected distance trees robustly show three groups: bacterial sequences are sister to all eukaryote sequences, which are cleanly subdivided into the cytosolic sequences and a clade comprising the chloroplast and endoplasmic reticulum (ER) Hsp90 sequences. The eukaryote cytosolic sequences comprise a robust opisthokont clade (animals/Choanozoa/fungi), a bikont clade, and an amoebozoan branch. However their topology is not robust. When the cytosolic sequences are rooted using only the ER/chloroplast clade as outgroup the amoebozoan Dictyostelium is sister to the opisthokonts forming a unikont clade in the distance tree. Congruence of this tree with that for concatenated mitochondrial proteins suggests that the root of the eukaryote tree is between unikonts and bikonts. Gamma-corrected maximum likelihood analyses of cytosolic sequences alone (519 unambiguously aligned amino acid positions) show bikonts as a clade, as do least-squares distance trees, but with other distance methods and parsimony the sole amoebozoan species branches weakly within bikonts. Choanozoa are clearly sisters to animals. Some major bikont groups (e.g. green plants, alveolates, Euglenozoa) are consistently recovered, but others (e.g. discicristates, chromalveolates) appear only in some trees; the backbone of the bikont subtree is not resolved, the position of groups represented only by single sequences being particularly unclear. Although single-gene trees will probably never resolve these uncertainties, the congruence of Hsp90 trees with other data is greater than for most other molecules and further taxon sampling of this molecule is recommended.  相似文献   
6.
《Palaeoworld》2015,24(3):251-262
The Paleo-Mesoproterozoic Ruyang Group of North China hosts early eukaryotic fossils such as Dictyosphaera, Shuiyousphaeridium, and Valeria, and thus offers valuable insights into the early evolution of single-celled eukaryotic life. In this paper, we report several additional forms of organic-walled microfossils from the Ruyang Group, including Plicatidium latum, Spiromorpha sp., and an unnamed form. V. lophostriata from the Ruyang Group is investigated using transmitted light microscopy, scanning electron microscopy, transmission electron microscopy, and biomechanical analysis. V. lophostriata is reconstructed as a spherical vesicle with two hemispherical halves bearing concentric striations resembling latitudinal circles. The formation of striations could be explained using the Belousov-Zhabotinsky reaction model or the Turing reaction-diffusion model. A biomechanical analysis using the thin-walled spherical pressure vessel model suggests that the concentric striations of V. lophostriata may have functioned as a mechanism to guide biologically programmed excystment through medial split. Our analysis provides essential paleontological data to better understand the functional biology and life cycles of early eukaryotes such as Valeria.  相似文献   
7.
The relationship among the three cellular domains Archaea, Bacteria, and Eukarya has become a central problem in unraveling the tree of life. This relationship can now be studied as the completely sequenced genomes of representatives of these cellular domains become available. We performed a bioinformatic investigation of the Encephalitozoon cuniculi proteome. E. cuniculi has the smallest sequenced eukaryotic genome, 2.9 megabases coding for 1997 proteins. The proteins of E. cuniculi were compared with a previously characterized set of eukaryotic signature proteins (ESPs). ESPs are found in a eukaryotic cell, whether from an animal, a plant, a fungus, or a protozoan, but are not found in the Archaea and the Bacteria. We demonstrated that 85% of the ESPs have significant sequence similarity to proteins in E. cuniculi. Hence, E. cuniculi, a minimal eukaryotic cell that has removed all inessential proteins, still preserves most of the ESPs that make it a member of the Eukarya. The locations and functions of these ESPs point to the earliest history of eukaryotes.Reviewing Editor: Dr. Manyuan Long  相似文献   
8.
While veritable oceans of ink have been spilled over the base distributions within genes, the literature is virtually silent on large scale intra genomic base distribution. To address this issue, we have examined approximately 3400 chromosomal sequences from approximately 2000 entire genomes-including DNA and RNA, single- and double-stranded, coding and non-coding genomes. For each sequence the mean, variance, skewness, and kurtosis for each base were computed along with the genome base composition. The main findings are: (1) there is no simple relationship between these statistics and the base composition of the genome, (2) in non-viral genomes, base distribution is non-uniform, (3) base distribution in non-eukaryotic genomes obeys a number of simple rules, (4) these rules are not dependent on the presence of coding sequences, (5) bacterial genomes in particular are unusually compliant with these rules, and (6) eukaryotes have a unique pattern of base distribution.  相似文献   
9.
Summary A statistical analysis of the data tabulated in the Atlas of Protein Sequence and Structure 1972 indicates that the observed frequency of occurrence of the tripeptides Asn-X-Ser and Asn-X-Thr is approximately one third of the expected in eukaryotic proteins, but in prokaryotic proteins the observation agrees closely with expectation. Thus the lowered frequency of these tripeptides found by Hunt and Dayhoff is restricted to eukaryotic proteins. Of all the Asn-X-Ser/Thr sequences examined, those which contain covalently attached carbohydrates are found only in the extracellular proteins of eukaryote. These observations are discussed in relation to the evolution of glycoproteins which seems to have occurred in the ancestor of eukaryotes after the divergence from prokaryotes.  相似文献   
10.
Computer analyses of various genome sequences revealed the existence of certain periodical patterns of adenine–adenine dinucleotides (ApA). For each genome sequence of 13 eubacteria, 3 archaebacteria, 10 eukaryotes, 60 mitochondria, and 9 chloroplasts, we counted frequencies of ApA dinucleotides at each downstream position within 50 bp from every ApA. We found that the complete genomes of all three archaebacteria have clear ApA periodicities of about 10 bps. On the other hand, all of the 13 eubacteria we analyzed were found to have an ApA periodicity of about 11 bp. Similar periodicities exist in the 10 eukaryotes, although higher organisms such as primates tend to have weaker periodic patterns. None of the mitochondria and chroloplasts we analyzed showed an evident periodic pattern. Received: 3 November 1998 / Accepted: 24 March 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号