首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2019年   1篇
  2016年   1篇
  2013年   1篇
  2011年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
2.
The mitochondrial enzyme ETHE1 is a persulfide dioxygenase essential for cellular sulfide detoxification, and its deficiency causes the severe and complex inherited metabolic disorder ethylmalonic encephalopathy (EE). In spite of well-described clinical symptoms of the disease, detailed cellular and molecular characterization is still ambiguous. Cellular redox regulation has been described to be influenced in ETHE1 deficient cells, and to clarify this further we applied image cytometry and detected decreased levels of reduced glutathione (GSH) in cultivated EE patient fibroblast cells. Cell growth initiation of the EE patient cells was impaired, whereas cell cycle regulation was not. Furthermore, Seahorse metabolic analyzes revealed decreased extracellular acidification, i. e. decreased lactate formation from glycolysis, in the EE patient cells. TMT-based large-scale proteomics was subsequently performed to broadly elucidate cellular consequences of the ETHE1 deficiency. More than 130 proteins were differentially regulated, of which the majority were non-mitochondrial. The proteomics data revealed a link between ETHE1-deficiency and down-regulation of several ribosomal proteins and LIM domain proteins important for cellular maintenance, and up-regulation of cell surface glycoproteins. Furthermore, several proteins of endoplasmic reticulum (ER) were perturbed including proteins influencing disulfide bond formation (e.g. protein disulfide isomerases and peroxiredoxin 4) and calcium-regulated proteins. The results indicate that decreased level of reduced GSH and alterations in proteins of ribosomes, ER and of cell adhesion lie behind the disrupted cell growth of the EE patient cells.  相似文献   
3.
Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early‐onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences of the disorder are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1‐deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1‐deficient mice. Our results demonstrated a clear link between ETHE1‐deficiency and redox active proteins, as reflected by downregulation of several proteins related to oxidation‐reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1‐deficiency on metabolic reprogramming through upregulation of glycolytic enzymes and by altering several heterogeneous ribonucleoproteins, indicating novel link between ETHE1 and gene expression regulation. We also found increase in total protein acetylation level, pointing out the link between ETHE1 and acetylation, which is likely controlled by both redox state and cellular metabolites. These findings are relevant for understanding the complexity of the disease and may shed light on important functions influenced by ETHE1 deficiency and by the concomitant increase in the gaseous mediator hydrogen sulfide. All MS data have been deposited in the ProteomeXchange with the dataset identifiers PXD002741 ( http://proteomecentral.proteomexchange.org/dataset/PXD002741 ) and PXD002742 ( http://proteomecentral.proteomexchange.org/dataset/PXD002741 ).  相似文献   
4.
Short-chain acyl-CoA dehydrogenase deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of ethylmalonic (EMA) and methylsuccinic (MSA) acids and clinically by severe neurological symptoms. In the present study we investigated the in vitro effects of EMA and MSA on the activity of creatine kinase (CK) in homogenates from cerebral cortex, skeletal and cardiac muscle of rats. EMA significantly inhibited CK activity from cerebral cortex, but did not affect this activity in skeletal and cardiac muscle. Furthermore, MSA had no effect on this enzyme in all tested tissues. Glutathione (GSH), ascorbic acid and -tocopherol, and the nitric oxide synthase inhibitor L-NAME, did not affect the enzyme activity per se, but GSH fully prevented the inhibitory effect of EMA when co-incubated with EMA. In contrast, -tocopherol, ascorbic acid and L-NAME did not influence the inhibitory effect of the acid. The data suggest that inhibition of brain CK activity by EMA is possibly mediated by oxidation of essential groups of the enzyme, which are protected by the potent intracellular, endogenous, naturally occurring antioxidant GSH.  相似文献   
5.
A limited number of enzymes are known that play a role analogous to DNA proofreading by eliminating non-classical metabolites formed by side activities of enzymes of intermediary metabolism. Because few such "metabolite proofreading enzymes" are known, our purpose was to search for an enzyme able to degrade ethylmalonyl-CoA, a potentially toxic metabolite formed at a low rate from butyryl-CoA by acetyl-CoA carboxylase and propionyl-CoA carboxylase, two major enzymes of lipid metabolism. We show that mammalian tissues contain a previously unknown enzyme that decarboxylates ethylmalonyl-CoA and, at lower rates, methylmalonyl-CoA but that does not act on malonyl-CoA. Ethylmalonyl-CoA decarboxylase is particularly abundant in brown adipose tissue, liver, and kidney in mice, and is essentially cytosolic. Because Escherichia coli methylmalonyl-CoA decarboxylase belongs to the family of enoyl-CoA hydratase (ECH), we searched mammalian databases for proteins of uncharacterized function belonging to the ECH family. Combining this database search approach with sequencing data obtained on a partially purified enzyme preparation, we identified ethylmalonyl-CoA decarboxylase as ECHDC1. We confirmed this identification by showing that recombinant mouse ECHDC1 has a substantial ethylmalonyl-CoA decarboxylase activity and a lower methylmalonyl-CoA decarboxylase activity but no malonyl-CoA decarboxylase or enoyl-CoA hydratase activity. Furthermore, ECHDC1-specific siRNAs decreased the ethylmalonyl-CoA decarboxylase activity in human cells and increased the formation of ethylmalonate, most particularly in cells incubated with butyrate. These findings indicate that ethylmalonyl-CoA decarboxylase may correct a side activity of acetyl-CoA carboxylase and suggest that its mutation may be involved in the development of certain forms of ethylmalonic aciduria.  相似文献   
6.
The inherited neurodegenerative disorder glutaric aciduria type 1 (GA1) results from mutations in the gene for the mitochondrial matrix enzyme glutaryl-CoA dehydrogenase (GCDH), which leads to elevations of the dicarboxylates glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in brain and blood. The characteristic clinical presentation of GA1 is a sudden onset of dystonia during catabolic situations, resulting from acute striatal injury. The underlying mechanisms are poorly understood, but the high levels of GA and 3OHGA that accumulate during catabolic illnesses are believed to play a primary role. Both GA and 3OHGA are known to be substrates for Na(+)-coupled dicarboxylate transporters, which are required for the anaplerotic transfer of the tricarboxylic acid cycle (TCA) intermediate succinate between astrocytes and neurons. We hypothesized that GA and 3OHGA inhibit the transfer of succinate from astrocytes to neurons, leading to reduced TCA cycle activity and cellular injury. Here, we show that both GA and 3OHGA inhibit the uptake of [(14)C]succinate by Na(+)-coupled dicarboxylate transporters in cultured astrocytic and neuronal cells of wild-type and Gcdh(-/-) mice. In addition, we demonstrate that the efflux of [(14)C]succinate from Gcdh(-/-) astrocytic cells mediated by a not yet identified transporter is strongly reduced. This is the first experimental evidence that GA and 3OHGA interfere with two essential anaplerotic transport processes: astrocytic efflux and neuronal uptake of TCA cycle intermediates, which occur between neurons and astrocytes. These results suggest that elevated levels of GA and 3OHGA may lead to neuronal injury and cell death via disruption of TCA cycle activity.  相似文献   
7.
Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly ethylmalonic acid (EMA) and clinically by neurological dysfunction. In the present study we investigated the in vitro effects of EMA on the activity of the mitochondrial (Mi-CK) and cytosolic (Cy-CK) creatine kinase isoforms from cerebral cortex, skeletal muscle, and cardiac muscle of young rats. CK activities were measured in the mitochondrial and cytosolic fractions prepared from whole-tissue homogenates of 30-day-old Wistar rats. The acid was added to the incubation medium at concentrations ranging from 0.5 to 2.5 mM. EMA had no effect on Cy-CK activity, but significantly inhibited the activity of Mi-CK at 1.0 mM and higher concentrations in the brain. In contrast, both Mi-CK and Cy-CK from skeletal muscle and cardiac muscle were not affected by the metabolite. We also evaluated the effect of the antioxidants glutathione (GSH), ascorbic acid, and a-tocopherol and the nitric oxide synthase inhibitor L-NAME on the inhibitory action of EMA on cerebral cortex Mi-CK activity. We observed that the drugs did not modify Mi-CK activity per se, but GSH and ascorbic acid prevented the inhibitory effect of EMA when co-incubated with the acid. In contrast, L-NAME and -tocopherol could not revert the inhibition provoked by EMA on Mi-CK activity. Considering the importance of CK for brain energy homeostasis, it is proposed that the inhibition of Mi-CK activity may be associated to the neurological symptoms characteristic of SCAD deficiency.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号