首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2014年   2篇
  2011年   4篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  1976年   1篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
2.
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1–3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds.Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.  相似文献   
3.
Previously we have reported on a series of pyridine-3-carboxamide inhibitors of DNA gyrase and DNA topoisomerase IV that were designed using a computational de novo design approach and which showed promising antibacterial properties. Herein we describe the synthesis of additional examples from this series aimed specifically at DNA gyrase, along with crystal structures confirming the predicted mode of binding and in vitro ADME data which describe the drug-likeness of these compounds.  相似文献   
4.
Hybridization of natural products has high potential to further improve their activities and may produce synergistic effects between linked pharmacophores. Here we report synthesis of nine new hybrids of natural products egonol, homoegonol, thymoquinone and artemisinin and evaluation of their activities against P. falciparum 3D7 parasites, human cytomegalovirus, sensitive and multidrug-resistant human leukemia cells. Most of the new hybrids exceed their parent compounds in antimalarial, antiviral and antileukemia activities and in some cases show higher in vitro efficacy than clinically used reference drugs chloroquine, ganciclovir and doxorubicin. Combined, our findings stress the high potency of these hybrids and encourages further use of the hybridization concept in applied pharmacological research.  相似文献   
5.
6.
In an effort to improve biphalin’s potency and efficacy at the µ-(MOR) and δ-opioid receptors (DOR), a series of cyclic biphalin analogues 15 with a cystamine or piperazine linker at the C-terminus were designed and synthesized by solution phase synthesis using Boc-chemistry. Interestingly, all of the analogues showed balanced opioid agonist activities at all opioid receptor subtypes due to enhanced κ-opioid receptor (KOR) activity. Our results indicate that C-terminal flexible linkers play an important role in KOR activity compared to that of the other cyclic biphalin analogues with a hydrazine linker. Among them, analogue 5 is a potent (Ki?=?0.27, 0.46, and 0.87?nM; EC50?=?3.47, 1.45, and 13.5?nM at MOR, DOR, and KOR, respectively) opioid agonist with high efficacy. Based on the high potency and efficacy at the three opioid receptor subtypes, the ligand is expected to have a potential synergistic effect on relieving pain and further studies including in vivo tests are worthwhile.  相似文献   
7.
Voltage-gated sodium channels (VGSC) are a well-established drug target for anti-epileptic, anti-arrhythmic and pain medications due to their presence and the important roles that they play in excitable cells. Recently, their presence has been recognized in non-excitable cells such as cancer cells and their overexpression has been shown to be associated with metastatic behavior in a variety of human cancers. The neonatal isoform of the VGSC subtype, Nav1.5 (nNav1.5) is overexpressed in the highly aggressive human breast cancer cell line, MDA-MB-231. The activity of nNav1.5 is known to promote the breast cancer cell invasion in vitro and metastasis in vivo, and its expression in primary mammary tumors has been associated with metastasis and patient death. Metastasis development is responsible for the high mortality of breast cancer and currently there is no treatment available to specifically prevent or inhibit breast cancer metastasis. In the present study, a 3D-QSAR model is used to assist the development of low micromolar small molecule VGSC blockers. Using this model, we have designed, synthesized and evaluated five small molecule compounds as blockers of nNav1.5-dependent inward currents in whole-cell patch-clamp experiments in MDA-MB-231 cells. The most active compound identified from these studies blocked sodium currents by 34.9?±?6.6% at 1?μM. This compound also inhibited the invasion of MDA-MB-231 cells by 30.3?±?4.5% at 1?μM concentration without affecting the cell viability. The potent small molecule compounds presented here have the potential to be developed as drugs for breast cancer metastasis treatment.  相似文献   
8.
Sanjuanolide, psorachalcone A and its seven new analogues were synthesized via a combinatorial strategy by aldol reaction. In order to investigate the effect between electron density in π-conjugated systems and biological activities, several electron-withdrawing and electron-donating groups were introduced at C-4 and the phenolic hydroxyl groups of sanjuanolide. The two natural products and its seven new analogues were investigated for their inhibitory effects against five cancer cell lines. Moreover, the hydroxyisoprenyl group may be important to maintain the biological activities of sanjuanolide.  相似文献   
9.
Seminolipids 1a and 1b and galactosylalkylacylglycerols 2a and 2b, labelled with deuterium on the alkyl or acyl chain, respectively, were obtained isotopically and chemically pure through a straightforward synthesis from protected glycidyl galactoside 3 in an overall 22% yield. The identity and purity of compounds was ascertained by NMR spectroscopy and ESI mass spectrometry analysis. These labelled compounds are important as internal standards for quantification of these lipids by mass spectrometry, and they could also be used in metabolic studies in in vitro and even in vivo systems. Extension of the procedure could provide a route for the preparation of isotopomers of other compounds of the same general class.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号