首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2019年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2000年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Using field data from previous studies we built matrix models for two populations of giant rosettes, Espeletia timotensis Cuatrec. and E. spicata Sch. Bip. Wedd., from the Andes Cordillera in Mérida, Venezuela. We analysed the models and calculated population growth rate (λ), sensitivities, elasticities and the sensitivity of the elasticities to changes in the vital rates. The analysis showed that the two species behave alike in general demographic terms. In both models, population growth rate is positive and sensitivities of λ to changes in vital rates decrease markedly in this order: plant establishment, progression of juvenile–adult, germination and survival. The relative contributions of vital rates to λ (elasticities) are very similar to those of other woody plant species: a higher contribution of survival and a very low contribution of fecundity. Transition from seedling to juvenile is most important and the younger established stages (juveniles and young adults) play a predominant demographic role in both populations. Seed banks and older adults are playing a relatively minor role in the dynamics of both populations. However, they may be important in relation to unpredictable, favourable or detrimental events. Perturbation analysis of elasticities showed that increasing the rate of plant establishment will decrease the relative importance of stasis. We conclude that both species are demographically very close, and similar to other long‐lived woody plant species. However, the two species differ in the role of the seed bank, which seems more important in the demography of E. spicata than in E. timotensis.  相似文献   
2.
The role of capacitance in the water balance of Andean giant rosette species   总被引:11,自引:6,他引:5  
Abstract Pith water storage capacity and its role in plant-water relations were studied in seven giant rosette species of the genus Espeletia from the Venezuelan Andes. Readily available water from the pith was calculated to be capable of sustaining mean transpiration for up to 2.5 h. The relative importance of water stored in the pith, however, differed among species. The species that grow in the higher and colder environments tended to have a greater capacitance than the species that grow in the lower and less extreme environments. The pith volume per unit leaf area (PV/LA) was found to be a good indicator of the relative water storage capacity of the adult individuals of each species. Diurnal fluctuations in leaf water potential were not as pronounced in the species with higher PV/LA values. The species-specific PV/LA was highly correlated with the leaf turgor loss point and with the total resistance to water flow from soil to leaves. These results suggested that species-specific capacitance in the genus Espeletia is a response to temperature-limited soil water availability and that cold tropical environments with frequent subfreezing temperatures tend to select for high water storage capacity in giant rosette plants.  相似文献   
3.
ent-Kaurenic acid and many natural derivatives of this diterpene are known to have interesting biological properties. ent-15-Oxo-kaur-16-en-19-oic acid can be easily obtained from grandiflorolic acid which was first isolated from Espeletia grandiflora. The present work describes the proapoptotic effect of ent-15-oxo-kaur-16-en-19-oic acid on the human prostate carcinoma epithelial cell line PC-3 as evidenced by the changes in the expression level of proteins associated with the execution and regulation of apoptosis. Cell viability was affected upon exposure to the compound, the IC(50) were determined as 3.7 microg/ml, which is 4 times lower than that corresponding to a primary cell culture of fibroblasts (14.8 microg/mL). Through Western blot analysis, active forms of caspace-3 associated with the specific proteolysis of Poly(ADP-ribose) polymerase (PARP) were detected. Reduced levels of the antiapoptotic protein Bcl-2, as well as the appearance of internucleosomal DNA fragmentation, were also demonstrated. Thus, ent-15-oxo-kaur-16-en-19-oic acid may be a promising lead compound for new chemopreventive strategies, alone or in combination with traditional chemotherapy agents to overcome drug resistance in tumoral cells.  相似文献   
4.
ABSTRACT

Background: Stomatal response functions of dominant plant species can provide insights into the behaviour of ecosystems under environmental stress, and provide tools for modelling their response to climate change. However, they remain little studied in tropical Alpine ecosystems.

Aims: Our objective was to formulate and compare stomatal response functions for two dominant páramo species with different adaptive strategies to drought, the stress-tolerant shrub Hypericum laricifolium, and the stress avoiding giant rosette Espeletia schultzii and thus enable making projections as to their future fitness in a changing climate.

Methods: A reanalysis of data found in the literature and new ecophysiological and micrometeorological measurements were used to fit and test new stomatal response functions to environmental variables for these two species.

Results: The response functions of vapour pressure differences between leaf and air showed an exponential decrease for both species, while for photosynthetically active radiation (PAR), peak-form response functions provided the best fit. The response function for leaf water potential was linear for the drought-tolerant shrub and decreased exponentially for the stress avoiding giant rosette. Several thresholds prior to stomatal closure were also included in the functions.

Conclusions: Although stress-avoiding and stress-tolerant strategies are both successful in the Andean páramo, the response functions suggest that the tolerant shrub could be more resistant to more intense drought.  相似文献   
5.
From March 2001 to December 2002, we studied the reproductive phenology, pollination ecology, and growth rates of Espeletia grandiflora Humb. and Bonpl. (Asteraceae), a giant caulescent rosette from the Páramos of the Eastern Andes of Colombia. Espeletia grandiflora was found to be predominantly allogamous and strongly self-incompatible. Bumblebees (Bombus rubicundus and B. funebris) were the major pollinators of E. grandiflora, although moths, hummingbirds, flies, and beetles also visited flowers. Inflorescence development began in March and continued through August to September. Plants flowered for 30 - 96 days with a peak from the beginning of October through November. The percentage of flowering plants strongly differed among size classes and between both years. Seed dispersal occurred as early as September through May of the following year. The average absolute growth rate for juveniles and adults rate was 7.6 cm/year. Given the scarcity of floral visitors at high altitudes due to climatic conditions, we suggest that even small contributions from a wide range of pollinators might be advantageous for pollination of E. grandiflora. Long-term studies on different populations of E. grandiflora are required to determine if the high growth rates are representative, to quantify the variation in the flowering behavior within and among populations, and to establish if nocturnal pollination is a trait that is exclusive to our population of E. grandiflora.  相似文献   
6.
Freezing avoidance in Andean giant rosette plants   总被引:3,自引:1,他引:2  
Abstract Frost avoidance mechanisms were studied in Espeletia spicata and Espeletia timotensis, two Andean giant rosette species. The daily courses of soil, air and tissue temperatures were measured at a site at circa 4000 m. Only the leaves were exposed to subzero temperatures; the apical bud and stem pith tissues were insulated by surrounding tissues. The leaf tissues avoided freezing by supercooling rather than by undergoing active osmotic changes. The temperatures at which ice formed in the tissues (the supercooling points) coincided with injury temperatures indicating that Espeletia tissue does not tolerate any kind of ice formation. For insulated tissue (apical bud, stem pith, roots) the supercooling point was around - 5°C coinciding with the injury temperature. Supercooling points of about –13 to - 16°C were observed for leaves. These results contrast with those reported for Afroalpine giant rosettes which tolerate extracellular freezing. The significance of different adaptive responses of giant rosettes to similar cold tropical environments is discussed.  相似文献   
7.
Abstract. The influence of insulating dead leaves on water balance in Espeletia timotensis Cuatr., an Andean caulescent giant rosette plant, was studied under field and laboratory conditions. Removal of the dead leaf layer surrounding the stem changed the pattern of diurnal stem temperature variation and produced transient and permanent effects on water balance. The pattern of liquid water flow resistance increase at low stem temperatures suggested that much of the water flow in the stem was through living membranes, probably those of the pith cells. The pith was determined to be an important source of stored water for daily transpirational needs. The lethal effects of dead leaf removal were attributed to one or more of the following causes: (1) inhibition of pith recharge by subfreezing stem temperatures; (2) embolisms in stem xylem; (3) freezing injury to pith tissue. The results suggested that an insulating layer of marcescent leaves and the presence of an internal water reservoir closer to the rosette than the soil water are important adaptations for maintenance of a favourable water balance in tropical alpine habitats where freezing temperatures occur regularly but last only a few hours.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号