首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
  国内免费   3篇
  2022年   1篇
  2020年   2篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1984年   1篇
  1981年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
1.
Summary Human recombinant activin A, which is identical with erythroid differentiation factor (EDF), was tested for its mesoderm-inducing activity in concentrations from 0.3–50 ng/ml, using ectoderm of Xenopus late blastula (Stage 9) as the responding tissue. At a low concentration of activin A, blood-like cells, mesenchyme, and coelomic epithelium were induced; at a moderate concentration muscle and neural tissue, and at a high concentration notochord. Activin A thus induced all mesodermal tissues in a dose-dependent manner, such that a low dose induced ventral structures and a high dose induced dorsal structures. Activin may act as an intrinsic inducing molecule responsible for establishing the dorso-ventral axis in early Xenopus development. Offprint requests to: M. Asashima  相似文献   
2.
Understanding drug-membrane and drug-membrane protein interactions would be a crucial step towards understanding the action and biological properties of anthracyclines, as the cell membrane with its integral and peripheral proteins is the first barrier encountered by these drugs. In this paper, we briefly describe mitoxantrone-monolayer and mitoxantrone-bilayer interactions, focusing on the effect of mitoxantrone on the interactions between erythroid or nonerythroid spectrin with phosphatidylethanolamine-enriched mono- and bilayers. We found that mitoxantrone markedly modifies the interaction of erythroid and nonerythroid spectrins with phosphatidylethanolamine/phosphatitydcholine (PE/PC) monolayers. The change in Δπ induced by spectrins is several-fold larger in the presence of 72?nM mitoxantrone than in its absence: spectrin/mitoxantrone complexes induced a strong compression of the monolayer. Spin-labelling experiments showed that spectrin/mitoxantrone complexes caused significant changes in the order parameter measured using a 5′-doxyl stearate probe in the bilayer, but they practically did not affect the mobility of 16′-doxyl stearate. These results indicate close-to-surface interactions/penetrations without significant effect on the mid-region of the hydrophobic core of the bilayer. The obtained apparent equilibrium dissociation constants indicated relatively similar mitoxantrone-phospholipid and mitoxantrone-spectrin (erythroid and nonerythroid) binding affinities. These results might in part, explain the effect of mitoxantrone on spectrin distribution in the living cells.  相似文献   
3.
4.
The acute lymphoblastic leukemia cell line CCRF-CEM is sensitive to Ara-C and undergoes apoptosis. In contrast, the chronic myelogenous leukemia (CML) cell line K562 is highly resistant to Ara-C, which causes the cells to differentiate into erythrocytes before undergoing apoptosis. We used cDNA microarrays to monitor the alterations in gene expression in these two cell lines under conditions leading to apoptosis or differentiation. Ara-C-treated CCRF-CEM cells were characterized by a cluster of down-regulated chaperone genes, whereas Ara-C-treated K562 cells were characterized by a cluster of up-regulated hemoglobin genes. In K562 cells, Ara-C treatment induced significant down-regulation of the asparagine synthetase gene, which is involved in resistance to L-asparaginase. Sequential treatment with Ara-C and L-asparaginase had a synergistic effect on the inhibition of K562 cell growth, and combination therapy with these two anticancer agents may prove effective in the treatment of CML, which cannot be cured by either drug alone.  相似文献   
5.
Properly metabolized globin synthesis and iron uptake are indispensable for erythroid cell differentiation and maturation. Mitochondrial participation is crucial in the process of haeme synthesis for cytochromes and haemoglobin. We studied the final biosynthesis site of haemoglobin using an ultrastructural approach, with erythroid cells obtained from rabbit embryos, in order to compare these results with those of animals treated with saponine or phenylhydrazine. Our results are similar to those obtained in assays with adult mammals, birds, amphibians, reptiles and fish, after induction of haemolytic anaemia. Therefore, the treatment did not interfere with the process studied, confirming our previous findings. Immunoelectron microscopy showed no labelling of mitochondria or other cellular organelles supposedly involved in the final biosynthesis of haemoglobin molecules, suggesting instead that it occurs free in the cytoplasm immediately after the liberation of haeme from the mitochondria, by electrostatic attraction between haeme and globin chains.  相似文献   
6.
Peroxiredoxin III (Prdx III), the mitochondrial peroxidase, was preferentially expressed in murine erythroleukemia (MEL) cells. However, the mechanisms by which Prdx III regulates erythroid differentiation are unknown. In this study, K562 cells were differentiated by Ara-C treatment, and Prdx III was dramatically increased until day 5. We also investigated Prdx III expression pattern on in vitro erythropoiesis of human CD34(+) cells. When human CD34(+) cells became proerythrocyte on day 7, Prdx III was diminished, and then augmented on day 12. We established the stable sublines of Prdx III overexpression (O/E), and dominant-negative (D/N). The intracellular ROS level of Prdx III O/E cell line was lower than D/N stable cell lines. Moreover, Prdx III O/E cell line was placed in G1-arrest, but not D/N cell lines. Finally, the expression level of beta-globin and GATA-1 was dramatically increased in Prdx III O/E cell line.  相似文献   
7.
8.
9.
10.
Terminal differentiation of mammalian erythroid progenitors involves 4-5 cell divisions and induction of many erythroid important genes followed by chromatin and nuclear condensation and enucleation. The protein levels of c-Myc (Myc) are reduced dramatically during late stage erythroid maturation, coinciding with cell cycle arrest in G(1) phase and enucleation, suggesting possible roles for c-Myc in either or both of these processes. Here we demonstrate that ectopic Myc expression affects terminal erythroid maturation in a dose-dependent manner. Expression of Myc at physiological levels did not affect erythroid differentiation or cell cycle shutdown but specifically blocked erythroid nuclear condensation and enucleation. Continued Myc expression prevented deacetylation of several lysine residues in histones H3 and H4 that are normally deacetylated during erythroid maturation. The histone acetyltransferase Gcn5 was up-regulated by Myc, and ectopic Gcn5 expression partially blocked enucleation and inhibited the late stage erythroid nuclear condensation and histone deacetylation. When overexpressed at levels higher than the physiological range, Myc blocked erythroid differentiation, and the cells continued to proliferate in cytokine-free, serum-containing culture medium with an early erythroblast morphology. Gene expression analysis demonstrated the dysregulation of erythropoietin signaling pathway and the up-regulation of several positive regulators of G(1)-S cell cycle checkpoint by supraphysiological levels of Myc. These results reveal an important dose-dependent function of Myc in regulating terminal maturation in mammalian erythroid cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号