首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  1993年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
The impact of illumination on specific growth rate, biomass formation, and synthesis of photopigment was studied in Erythromicrobium hydrolyticum, an obligately aerobic heterotrophic bacterium having the ability to synthesize bacteriochlorophyll a. In dark-grown continuous cultures the concentration of protein increased with increasing dilution rate, the concentration of bacteriochlorophyll a showed the opposite effect. At a dilution rate of 0.08 h-1 (68% of max in the dark) and SR-acetate of 11.8 mM, the concentration of BChla of illuminated cultures in steady-state was 11–22 nM, compared to 230–241 nM in cultures incubated in darkness. No significant differences were observed in the concentration of protein. A shift from darkness to light conditions resulted in increased specific growth rates resulting in increased biomass formation, thus showing that light enhances growth by serving as an additional energy source. This phenomenon, however, was temporary because bacteriochlorophyll synthesis is inhibited by light. In contrast to incubation in continuous light or dark, incubation under light/dark regimen resulted in permanently enhanced biomass formation. In the dark periods, bacteriochlorophyll was synthesized at elevated rates (compared to constant darkness), thus compensating the inhibitory effect of light in the preceding period. It thus appears that the organism is well-adpated to life in environments with alternating light/dark conditions. The ecological relevance of the observations is discussed.Non-standard abbreviations BChla bacteriochlorophyll a - D dilution rate - spceific growth rate - Ks saturation constant - SR concentration of limiting in inflowing medium of chemostat  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号