首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   6篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   5篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region. To determine the effect of climate change impacts on gas exchange in tundra, we quantified foliar photosynthesis (Anet), respiration in the dark and light (RD and RL, determined using the Kok method), photorespiration (PR), carbon gain efficiency (CGE, the ratio of photosynthetic CO2 uptake to total CO2 exchange of photosynthesis, PR, and respiration), and leaf traits of three dominant species – Betula nana, a woody shrub; Eriophorum vaginatum, a graminoid; and Rubus chamaemorus, a forb – grown under long-term warming and fertilization treatments since 1989 at Toolik Lake, Alaska. Under warming, B. nana exhibited the highest rates of Anet and strongest light inhibition of respiration, increasing CGE nearly 50% compared with leaves grown in ambient conditions, which corresponded to a 52% increase in relative abundance. Gas exchange did not shift under fertilization in B. nana despite increases in leaf N and P and near-complete dominance at the community scale, suggesting a morphological rather than physiological response. Rubus chamaemorus, exhibited minimal shifts in foliar gas exchange, and responded similarly to B. nana under treatment conditions. By contrast, E. vaginatum, did not significantly alter its gas exchange physiology under treatments and exhibited dramatic decreases in relative cover (warming: −19.7%; fertilization: −79.7%; warming with fertilization: −91.1%). Our findings suggest a foliar physiological advantage in the woody shrub B. nana that is further mediated by warming and increased soil nutrient availability, which may facilitate shrub expansion and in turn alter the terrestrial carbon cycle in future tundra environments.  相似文献   
2.
Eriophorum vaginatum and E. angustifolium are dominant arctic sedges of the well-drained tussock tundra and the permanently flooded wet-sedge tundra, respectively. We determined diurnal courses of gas exchange and water relations of the two species in their natural habitat and compared their responses to changes in light, air temperature, and humidity. Mean photosynthetic response to light was similar between E. angustifolium and E. vaginatum and carbon gain in both species was light limited during most of the growing season. On sunny and dry days, both species closed stomata in response to high leaf-to-air vapor pressure deficits. Even though E. angustifolium was growing in standing water, it exhibited a tighter control of transpirational water loss and had lower hydraulic conductivity in the soil-root-shoot pathway than E. vaginatum. The different response pattern between the two species is discussed in the context of differences in habitat conditions.  相似文献   
3.
We applied a 15N dilution technique called “Integrated Total Nitrogen Input” (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7 mg N pot−1) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2 mg N pot−1. Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55 kg N ha−1 yr−1. Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5–10 kg N ha−1 yr−1.  相似文献   
4.
Long-term fertilization of acidic tussock tundra has led to changes in plant species composition, increases in aboveground production and biomass and substantial losses of soil organic carbon (SOC). Root litter is an important input to SOC pools, although little is known about fine root demography in tussock tundra. In this study, we examined the response of fine root production and live standing fine root biomass to short- and long-term fertilization, as changes in fine root demography may contribute to observed declines in SOC. Live standing fine root biomass increased with long-term fertilization, while fine root production declined, reflecting replacement of the annual fine root system of Eriophorum vaginatum, with the long-lived fine roots of Betula nana. Fine root production increased in fertilized plots during an unusually warm growing season, but remained unchanged in control plots, consistent with observations that B. nana shows a positive response to climate warming. Calculations based on a few simple assumptions suggest changes in fine root demography with long-term fertilization and species replacement could account for between 20 and 39% of the observed declines in SOC stocks.  相似文献   
5.
Methane (CH4) and nitrous oxide (N2O) dynamics were studied in a boreal Sphagnum fuscum pine bog receiving annually (from 1991 to 1996) 30 or 100 kg NH4NO3-N ha–1. The gas emissions were measured during the last three growing seasons of the experiment. Nitrogen treatment did not affect the CH4 fluxes in the microsites where S. fuscum and S. angustifolium dominated. However, addition of 100 kg NH4NO3-N ha–1 yr–1 increased the CH4 emission from those microsites dominated by S. fuscum. This increase was associated with the increase in coverage of cotton grass (Eriophorum vaginatum) induced by the nitrogen treatment. The differences in the CH4 emissions were not related to the CH4 oxidation and production potentials in the peat profiles. The N2O fluxes were negligible from all microsites. Only minor short-term increases occurred after the nitrogen addition.  相似文献   
6.
7.
Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330–1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.  相似文献   
8.
The effects of long-term ozone fumigation on two common peatland plant species, a sedge Eriophorum vaginatum L. and a moss Sphagnum papillosum Lindb., were studied applying peatland microcosms. The peat cores with intact vegetation were cored from an oligotrophic pine fen and partially embedded into the soil of an open-air experimental field for four growing seasons. The open-air ozone exposure field consists of eight circular plots of which four were fumigated with elevated ozone concentration (doubled ambient) and four were ambient controls. The results showed that E. vaginatum and S. papillosum can tolerate ozone better than expected. Elevated ozone concentration did not affect overall relative length growth of E. vaginatum or S. papillosum. The leaf cross-section area of E. vaginatum leaves was 8% bigger in the ozone treatment compared to that in the ambient control. Ultrastuctural variables did not show any significant treatment effect in E. vaginatum or in S. papillosum. Total chlorophyll (a + b) concentration tended to increase in early growing season under ozone exposure. During the first growing season, elevated ozone concentration decreased methanol-extractable, UV-absorbing compounds in E. vaginatum. The results suggest that E. vaginatum and S. papillosum are ozone tolerant plant species and are likely able to cope with expected increase in tropospheric ozone concentration.  相似文献   
9.
Sullivan PF  Welker JM 《Oecologia》2005,142(4):616-626
We examined the effects of passive open-top warming chambers on Eriophorum vaginatum production near Toolik Lake, Alaska, USA. During the 2002 growing season, chamber warming was consistent with the magnitude and seasonality observed in recent decades throughout northwestern North America. Leaf-growth rates were higher in late May and early June; maximum growth rates in each leaf cohort occurred earlier and peak biomass was observed 20 days earlier within the chambers. Consequently, plants within the chambers maintained more live leaf biomass during the period of highest photosynthetically active radiation. Annual leaf production within the chambers (21±2 mg tiller) was not significantly different than under ambient conditions (17±2 mg tiller) (P=0.2256) despite higher early-season growth rates. Root growth began earlier; growth rates were higher in late May and early June, and maximum growth rates occurred earlier within the chambers. Therefore, plants within the chambers maintained greater root biomass during what earlier studies have identified as a period of relatively high nutrient availability. Annual root production within the chambers (191±42 g m–2) was not significantly different than under ambient conditions (119±48 g m–2) (P=0.1979), although there was a trend toward higher production within the chambers. The tendency toward higher root production within the chambers is consistent with previous laboratory experiments and with the predictions of biomass allocation theory.  相似文献   
10.
Differential responses of UK upland plants to nitrogen deposition   总被引:5,自引:0,他引:5  
Native upland species, Nardus stricta , Eriophorum vaginatum , Erica cinerea and Vaccinium vitis-idaea were given 3 or 60 kg N ha−1 yr−1, over 2 yr, applied as a mist (NH4NO3). The high N treatment increased above-ground biomass in all four species, but only significantly in E. cinerea , E. vaginatum and N. stricta . Biomass increases in E. vaginatum and N. stricta resulted from enhanced tiller production rather than shoot elongation. Root growth increased in N. stricta , so that root:shoot ratio in this species was unchanged by N. Root growth in E. vaginatum , E. cinerea and V. vitis-idaea did not respond to N and their root:shoot ratios decreased. Tissue N concentrations increased in both shoots and roots of all species in response to N. The accumulated foliar N did not increase the proportion of N allocated to Rubisco and the photosynthetic capacities of N. stricta , E. vaginatum and V. vitis-idaea were unchanged. Thus growth responses to N were due to altered allocation rather than increased rate of photosynthesis per unit leaf area. The high N treatment increased flower production significantly in E. cinerea but not in the other species. Although in this experiment dwarf shrubs were more responsive than graminoids to N, in the field at current N inputs the enhanced tillering of the graminoids may be more competitively advantageous, especially where gaps develop in the canopy. Thus increasing N deposition may lead to increased grassiness of upland heath, and in particular, a spread of N. stricta .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号